SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Minimally invasive

168

BACKGROUND: The efficacy and safety of rigid pericardial endoscopy as the promising minimally invasive approach to the pericardial space was evaluated. Techniques for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were developed. METHODS: Two swine and 5 canines were studied to evaluate the safety and efficacy of rigid pericardial endoscopy. After a double pericardiocentesis, a transurethral rigid endoscope was inserted into the pericardial space. The technique to obtain a clear visual field was examined, and acute complications such as hemodynamic changes and the effects on intra-pericardial pressure were evaluated. Using custom-made needles, pacemaker leads, and forceps, the applications for cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation were also evaluated. RESULTS: The use of air, the detention of a stiff guide wire in the pericardial space, and the stretching of the pericardium with the rigid endoscope were all useful to obtain a clear visual field. A side-lying position also aided observation of the posterior side of the heart. As a cell transplantation methodology, we developed an ultrasonography-guided needle, which allows for the safe visualization of transplantation without major complications. Pacemaker leads were safely and properly implanted, which provides a better outcome for cardiac resynchronizing therapy. Furthermore, the success of clear visualization of the pulmonary veins enabled us to perform epicardial ablation. CONCLUSIONS: Rigid pericardial endoscopy holds promise as a safe method for minimally invasive cell transplantation, epicardial pacemaker lead implantation, and epicardial ablation by allowing clear visualization of the pericardial space.

Concepts: Heart, Optical fiber, Effectiveness, Minimally invasive, Pericardium, Safety, Endoscopy, Artificial pacemaker

160

The Nuss procedure, which is a minimally invasive approach for treating pectus excavatum, has better functional and cosmetic outcomes than other invasive procedures. Cardiac perforation is the most serious complication and several methods for the prevention of intraoperative events has been developed. Although most cardiac injuries are detected in the operating room, in the case described herein the patient experienced sudden hypovolemic shock during the postoperative recovery period. This indicates that special caution is mandatory even after successful execution of the Nuss procedure.

Concepts: Blood, Surgery, Pectus excavatum, Chest, Sternum, Shock, Minimally invasive, Hypovolemia

84

A pooled patient-level analysis of two multicenter randomized controlled trials and one multicenter single-arm prospective trial.

Concepts: Randomized controlled trial, ClinicalTrials.gov, Joint, Minimally invasive, Sacroiliac joint, Joints

80

Use of robotic systems for minimally invasive surgery has rapidly increased during the last decade. Understanding the causes of adverse events and their impact on patients in robot-assisted surgery will help improve systems and operational practices to avoid incidents in the future.

Concepts: Surgery, Minimally invasive, Invasive, Invasiveness of surgical procedures

56

Circulating tumour DNA (ctDNA) carrying tumour-specific sequence alterations may provide a minimally invasive means to dynamically assess tumour burden and response to treatment in cancer patients. Somatic TP53 mutations are a defining feature of high-grade serous ovarian carcinoma (HGSOC). We tested whether these mutations could be used as personalised markers to monitor tumour burden and early changes as a predictor of response and time to progression (TTP).

Concepts: Cancer, Mutation, Oncology, Hereditary nonpolyposis colorectal cancer, BRCA2, Adenocarcinoma, Minimally invasive, BRCA1

52

Liver malignancies are a major burden of disease worldwide. The long-term prognosis for patients with unresectable tumors remains poor, despite advances in systemic chemotherapy, targeted agents, and minimally invasive therapies such as ablation, chemoembolization, and radioembolization. Thus, the demand for new and better treatments for malignant liver tumors remains high. Surgical isolated hepatic perfusion (IHP) has been shown to be effective in patients with various hepatic malignancies, but is complex, associated with high complication rates and not repeatable. Percutaneous isolated liver perfusion (PHP) is a novel minimally invasive, repeatable, and safer alternative to IHP. PHP is rapidly gaining interest and the number of procedures performed in Europe now exceeds 200. This review discusses the indications, technique and patient management of PHP and provides an overview of the available data.

Concepts: Vitamin D, Cancer, Oncology, Medical terms, Surgery, Chemotherapy, Liver, Minimally invasive

46

Minimally invasive, automated cot-side tools for monitoring early neurological development can be used to guide individual treatment and benchmark novel interventional studies. We develop an automated estimate of the EEG maturational age (EMA) for application to serial recordings in preterm infants. The EMA estimate was based on a combination of 23 computational features estimated from both the full EEG recording and a period of low EEG activity (46 features in total). The combination function (support vector regression) was trained using 101 serial EEG recordings from 39 preterm infants with a gestational age less than 28 weeks and normal neurodevelopmental outcome at 12 months of age. EEG recordings were performed from 24 to 38 weeks post-menstrual age (PMA). The correlation between the EMA and the clinically determined PMA at the time of EEG recording was 0.936 (95%CI: 0.932-0.976; n = 39). All infants had an increase in EMA between the first and last EEG recording and 57/62 (92%) of repeated measures within an infant had an increasing EMA with PMA of EEG recording. The EMA is a surrogate measure of age that can accurately determine brain maturation in preterm infants.

Concepts: Pregnancy, Brain, Mathematics, Embryo, Fetus, Electroencephalography, Minimally invasive, Media technology

38

Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

Concepts: Brain, Minimally invasive, Hypodermic needle, Electronic engineering

33

Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

Concepts: Surgery, Temperature, Minimally invasive, Liquid, Invasive, Invasiveness of surgical procedures, Robotics, Robot

29

Surgical innovations disseminate in the absence of coordinated systems to ensure their safe integration into clinical practice, potentially exposing patients to increased risk for medical error.

Concepts: Medical terms, Hospital, Surgery, Physician, Minimally invasive, Safety, Patient safety, Surgical oncology