SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mild cognitive impairment

193

A systematic review to examine the efficacy of computer-based cognitive interventions for cognitively healthy older adults was conducted. Studies were included if they met the following criteria: average sample age of at least 55 years at time of training; participants did not have Alzheimer’s disease or mild cognitive impairment; and the study measured cognitive outcomes as a result of training. Theoretical articles, review articles, and book chapters that did not include original data were excluded. We identified 151 studies published between 1984 and 2011, of which 38 met inclusion criteria and were further classified into three groups by the type of computerized program used: classic cognitive training tasks, neuropsychological software, and video games. Reported pre-post training effect sizes for intervention groups ranged from 0.06 to 6.32 for classic cognitive training interventions, 0.19 to 7.14 for neuropsychological software interventions, and 0.09 to 1.70 for video game interventions. Most studies reported older adults did not need to be technologically savvy in order to successfully complete or benefit from training. Overall, findings are comparable or better than those from reviews of more traditional, paper-and-pencil cognitive training approaches suggesting that computerized training is an effective, less labor intensive alternative.

Concepts: Alzheimer's disease, Effectiveness, Cognitive psychology, Cognitive neuroscience, Efficacy, Meta-analysis, Video game, Mild cognitive impairment

166

BACKGROUND: Several studies have been focused on design and synthesis of multi-target anti Alzheimer compounds. Utilizing of the dual Acetylcholinesterase/Butyrylcholinesterase inhibitors has gained more interest to treat the Alzheimer’s disease. As a part of a research program to find a novel drug for treating Alzheimer disease, we have previously reported 6-alkoxybenzofuranone derivatives as potent acetylcholinesterase inhibitors. In continuation of our work, we would like to report the synthesis of 5,6-dimethoxy benzofuranone derivatives bearing a benzyl pyridinium moiety as dual Acetylcholinesterase/Butyrylcholinesterase inhibitors. METHODS: The synthesis of target compounds was carried out using a conventional method. Bayer-Villiger oxidation of 3,4-dimethoxybenzaldehyde furnished 3,4-dimethoxyphenol. The reaction of 3,4-dimethoxyphenol with chloroacetonitrile followed by treatment with HCl solution and then ring closure yielded the 5,6-dimethoxy benzofuranone. Condensation of the later compound with pyridine-4-carboxaldehyde and subsequent reaction with different benzyl halides afforded target compounds. The biological activity was measured using standard Ellman’s method. Docking studies were performed to get better insight into interaction of compounds with receptor. RESULTS: The in vitro anti acetylcholinesterase/butyrylcholinesterase activity of compounds revealed that, all of the target compounds have good inhibitory activity against both Acetylcholinesterase/Butyrylcholinesterase enzymes in which compound 5b (IC50 = 52 +/- 6.38nM) was the most active compound against acetylcholinesterase. The same binding mode and interactions were observed for the reference drug donepezil and compound 5b in docking study. CONCLUSIONS: In this study, we presented a new series of benzofuranone-based derivatives having pyridinium moiety as potent dual acting Acetylcholinesterase/Butyrylcholinesterase inhibitors.

Concepts: Alzheimer's disease, Parkinson's disease, Acetylcholine, Acetylcholinesterase inhibitor, Memantine, Donepezil, Mild cognitive impairment

71

To predict the risk of probable dementia with Lewy bodies (DLB) competing with Alzheimer disease (AD) dementia by hippocampal volume (HV) in patients with mild cognitive impairment (MCI) with impairments in amnestic or nonamnestic cognitive domains.

Concepts: Alzheimer's disease, Memory, Parkinson's disease, Hippocampus, Dementia, Lewy body, Dementia with Lewy bodies, Mild cognitive impairment

44

Mild cognitive impairment (MCI) is a pre-dementia state; 5-10% of cases per year will evolve into dementia. MCI can be amnestic (AMCI) or non-amnestic. AMCI is associated with a higher risk of progression. In recent years, interest in acupuncture as a potential treatment for AMCI has grown. The aim of this meta-analysis was to estimate the clinical effectiveness and safety of acupuncture for AMCI.

Concepts: Alzheimer's disease, Epidemiology, Clinical trial, Medical statistics, Randomized controlled trial, Effectiveness, ClinicalTrials.gov, Mild cognitive impairment

43

Alzheimer’s disease is one of the most significant healthcare problems nationally and globally. Recently, the first description of the reversal of cognitive decline in patients with early Alzheimer’s disease or its precursors, MCI (mild cognitive impairment) and SCI (subjective cognitive impairment), was published [1]. The therapeutic approach used was programmatic and personalized rather than monotherapeutic and invariant, and was dubbed metabolic enhancement for neurodegeneration (MEND). Patients who had had to discontinue work were able to return to work, and those struggling at work were able to improve their performance. The patients, their spouses, and their co-workers all reported clear improvements. Here we report the results from quantitative MRI and neuropsychological testing in ten patients with cognitive decline, nine ApoE4+ (five homozygous and four heterozygous) and one ApoE4-, who were treated with the MEND protocol for 5-24 months. The magnitude of the improvement is unprecedented, providing additional objective evidence that this programmatic approach to cognitive decline is highly effective. These results have far-reaching implications for the treatment of Alzheimer’s disease, MCI, and SCI; for personalized programs that may enhance pharmaceutical efficacy; and for personal identification of ApoE genotype.

Concepts: Alzheimer's disease, Better, Medicine, Improve, Neurocognitive, Apolipoprotein E, Zygosity, Mild cognitive impairment

36

Alzheimer’s disease causes a progressive dementia that currently affects over 35 million individuals worldwide and is expected to affect 115 million by 2050 (ref. 1). There are no cures or disease-modifying therapies, and this may be due to our inability to detect the disease before it has progressed to produce evident memory loss and functional decline. Biomarkers of preclinical disease will be critical to the development of disease-modifying or even preventative therapies. Unfortunately, current biomarkers for early disease, including cerebrospinal fluid tau and amyloid-β levels, structural and functional magnetic resonance imaging and the recent use of brain amyloid imaging or inflammaging, are limited because they are either invasive, time-consuming or expensive. Blood-based biomarkers may be a more attractive option, but none can currently detect preclinical Alzheimer’s disease with the required sensitivity and specificity. Herein, we describe our lipidomic approach to detecting preclinical Alzheimer’s disease in a group of cognitively normal older adults. We discovered and validated a set of ten lipids from peripheral blood that predicted phenoconversion to either amnestic mild cognitive impairment or Alzheimer’s disease within a 2-3 year timeframe with over 90% accuracy. This biomarker panel, reflecting cell membrane integrity, may be sensitive to early neurodegeneration of preclinical Alzheimer’s disease.

Concepts: Alzheimer's disease, Brain, Positive predictive value, Type I and type II errors, Sensitivity and specificity, Magnetic resonance imaging, Dementia, Mild cognitive impairment

32

TREM2 is an innate immune receptor expressed on the surface of microglia. Loss-of-function mutations of TREM2 are associated with increased risk of Alzheimer’s disease (AD). TREM2 is a type-1 protein with an ectodomain that is proteolytically cleaved and released into the extracellular space as a soluble variant (sTREM2), which can be measured in the cerebrospinal fluid (CSF). In this cross-sectional multicenter study, we investigated whether CSF levels of sTREM2 are changed during the clinical course of AD, and in cognitively normal individuals with suspected non-AD pathology (SNAP). CSF sTREM2 levels were higher in mild cognitive impairment due to AD than in all other AD groups and controls. SNAP individuals also had significantly increased CSF sTREM2 compared to controls. Moreover, increased CSF sTREM2 levels were associated with higher CSF total tau and phospho-tau181P, which are markers of neuronal degeneration and tau pathology. Our data demonstrate that CSF sTREM2 levels are increased in the early symptomatic phase of AD, probably reflecting a corresponding change of the microglia activation status in response to neuronal degeneration.

Concepts: Alzheimer's disease, Immune system, Cancer, Mutation, Innate immune system, Acetylcholine, Cerebrospinal fluid, Mild cognitive impairment

31

Cross-sectional associations between engagement in mentally stimulating activities and decreased odds of having mild cognitive impairment (MCI) or Alzheimer disease have been reported. However, little is known about the longitudinal outcome of incident MCI as predicted by late-life (aged ≥70 years) mentally stimulating activities.

Concepts: Alzheimer's disease, Scientific method, Death, Memory, Apolipoprotein E, The Association, Donepezil, Mild cognitive impairment

30

Alzheimer’s disease is a multifactorial dementia disorder characterized by early amyloid-β, tau deposition, glial activation and neurodegeneration, where the interrelationships between the different pathophysiological events are not yet well characterized. In this study, longitudinal multitracer positron emission tomography imaging of individuals with autosomal dominant or sporadic Alzheimer’s disease was used to quantify the changes in regional distribution of brain astrocytosis (tracer (11)C-deuterium-L-deprenyl), fibrillar amyloid-β plaque deposition ((11)C-Pittsburgh compound B), and glucose metabolism ((18)F-fluorodeoxyglucose) from early presymptomatic stages over an extended period to clinical symptoms. The 52 baseline participants comprised autosomal dominant Alzheimer’s disease mutation carriers (n = 11; 49.6 ± 10.3 years old) and non-carriers (n = 16; 51.1 ± 14.2 years old; 10 male), and patients with sporadic mild cognitive impairment (n = 17; 61.9 ± 6.4 years old; nine male) and sporadic Alzheimer’s disease (n = 8; 63.0 ± 6.5 years old; five male); for confidentiality reasons, the gender of mutation carriers is not revealed. The autosomal dominant Alzheimer’s disease participants belonged to families with known mutations in either presenilin 1 (PSEN1) or amyloid precursor protein (APPswe or APParc) genes. Sporadic mild cognitive impairment patients were further divided into (11)C-Pittsburgh compound B-positive (n = 13; 62.0 ± 6.4; seven male) and (11)C-Pittsburgh compound B-negative (n = 4; 61.8 ± 7.5 years old; two male) groups using a neocortical standardized uptake value ratio cut-off value of 1.41, which was calculated with respect to the cerebellar grey matter. All baseline participants underwent multitracer positron emission tomography scans, cerebrospinal fluid biomarker analysis and neuropsychological assessment. Twenty-six of the participants underwent clinical and imaging follow-up examinations after 2.8 ± 0.6 years. By using linear mixed-effects models, fibrillar amyloid-β plaque deposition was first observed in the striatum of presymptomatic autosomal dominant Alzheimer’s disease carriers from 17 years before expected symptom onset; at about the same time, astrocytosis was significantly elevated and then steadily declined. Diverging from the astrocytosis pattern, amyloid-β plaque deposition increased with disease progression. Glucose metabolism steadily declined from 10 years after initial amyloid-β plaque deposition. Patients with sporadic mild cognitive impairment who were (11)C-Pittsburgh compound B-positive at baseline showed increasing amyloid-β plaque deposition and decreasing glucose metabolism but, in contrast to autosomal dominant Alzheimer’s disease carriers, there was no significant longitudinal decline in astrocytosis over time. The prominent initially high and then declining astrocytosis in autosomal dominant Alzheimer’s disease carriers, contrasting with the increasing amyloid-β plaque load during disease progression, suggests astrocyte activation is implicated in the early stages of Alzheimer’s disease pathology.

Concepts: Alzheimer's disease, Positron emission tomography, Positron, Symptom, Beta amyloid, Amyloid precursor protein, Mild cognitive impairment, Presenilin

29

Language impairment in Alzheimer’s disease occurs early, and language function deteriorates with progression of the illness to cause significant disability. This review focuses on language dysfunction in Alzheimer’s disease and the contribution of semantic memory impairment.

Concepts: Alzheimer's disease, Memory, Semantics, Semantic memory, Mild cognitive impairment, Memory loss