SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Midazolam

45

The intranasal route for medication administration is increasingly popular in the emergency department and out-of-hospital setting because such administration is simple and fast, and can be used for patients without intravenous access and in situations in which obtaining an intravenous line is difficult or time intensive (eg, for patients who are seizing or combative). Several small studies (mostly pediatric) have shown midazolam to be effective for procedural sedation, anxiolysis, and seizures. Intranasal fentanyl demonstrates both safety and efficacy for the management of acute pain. The intranasal route appears to be an effective alternative for naloxone in opioid overdose. The literature is less clear on roles for intranasal ketamine and dexmedetomidine.

Concepts: Ketamine, Naloxone, Intravenous therapy, Medicine, Morphine, Heroin, Opioid, Midazolam

34

This guideline provides recommendations for primary care clinicians who are prescribing opioids for chronic pain outside of active cancer treatment, palliative care, and end-of-life care. The guideline addresses 1) when to initiate or continue opioids for chronic pain; 2) opioid selection, dosage, duration, follow-up, and discontinuation; and 3) assessing risk and addressing harms of opioid use. CDC developed the guideline using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework, and recommendations are made on the basis of a systematic review of the scientific evidence while considering benefits and harms, values and preferences, and resource allocation. CDC obtained input from experts, stakeholders, the public, peer reviewers, and a federally chartered advisory committee. It is important that patients receive appropriate pain treatment with careful consideration of the benefits and risks of treatment options. This guideline is intended to improve communication between clinicians and patients about the risks and benefits of opioid therapy for chronic pain, improve the safety and effectiveness of pain treatment, and reduce the risks associated with long-term opioid therapy, including opioid use disorder, overdose, and death. CDC has provided a checklist for prescribing opioids for chronic pain (http://stacks.cdc.gov/view/cdc/38025) as well as a website (http://www.cdc.gov/drugoverdose/prescribingresources.html) with additional tools to guide clinicians in implementing the recommendations.

Concepts: Palliative medicine, Cancer, Medicine, Midazolam, End-of-life care, Pain, Opioid, Palliative care

29

Most patients with cancer prefer to die at home or in a hospice, but hospitals remain the most common place of death (PoD).This study aims to explore the changing time trends of PoD and the associated factors, which are essential for end-of-life care improvement.

Concepts: Midazolam, End-of-life care, Palliative medicine, Death, Hospital, Palliative care

27

Successful application of non-invasive ventilation (NIV) for acute respiratory failure (ARF) requires patient cooperation and comfort. The efficacy and safety of early IV dexmedetomidine (D) when added to protocolized prn IV midazolam (M) and fentanyl (F) remains unclear.

Concepts: Patient, Medical terms, Pulmonology, Midazolam

26

Efforts to improve end-of-life care have focused primarily on patients with cancer. High-quality end-of-life care is also critical for patients with other illnesses.

Concepts: Patient, Midazolam, Health care, Illness, End-of-life care, Medicine, Palliative care

25

Intranasal and buccal midazolam have recently emerged as possible alternatives to intravenous or rectal diazepam or intravenous lorazepam in the treatment of early status epilepticus (SE). However, to date no randomized controlled trial (RCT) has directly compared intranasal midazolam with buccal midazolam.

Concepts: Benzodiazepine withdrawal syndrome, Diazepam, Midazolam, Lorazepam, Anticonvulsant, Benzodiazepine, Randomized controlled trial, Status epilepticus

22

The purpose of this study was to compare the effectiveness and recovery times of 0.3 and 0.5 mg/kg intranasal midazolam (INM) administered with a mucosal atomizer device (MAD) in a pediatric emergency dental hospital clinic. One hundred eighteen children aged from 4 to 6 years were randomly administered either 0.3 or 0.5 mg/kg INM via an MAD in a triple-blinded randomized controlled trial. Sedation was achieved to some degree in 100% of the sample. The pulse rate and oxygen saturation were within the normal range in 99% of the patients. A burning sensation was reported in 9% of children. The recovery time of the 0.5 mg/kg group was statistically longer than that of the 0.3 mg/kg group (16.5 vs 18.8 minutes) but the difference was not clinically significant. The findings of this study show that 0.3 or 0.5 mg/kg doses of INM resulted in safe and effective sedation. The 0.5 mg/kg dose was more effective than the 0.3 mg/kg dose in reducing anxiety.

Concepts: Chaos theory, Effectiveness, Efficacy, Clinical trial, Hospital, Randomized controlled trial, Medicine, Midazolam

19

Perioperative anxiety is a common and undesirable outcome in pediatric surgical patients. The use of interactive tools to minimize perioperative anxiety is vastly understudied. The main objective of the current investigation was to compare the effects of a tablet-based interactive distraction (TBID) tool to oral midazolam on perioperative anxiety. We hypothesized that the TBID tool was not inferior to midazolam to reduce perioperative anxiety.

Concepts: Randomized controlled trial, Midazolam, The Current, Tool, Physician

13

Daily interruption of sedative therapy and limitation of deep sedation have been shown in several randomized trials to reduce the duration of mechanical ventilation and hospital length of stay, and to improve the outcome of critically ill patients. However, patients with severe acute brain injury (ABI; including subjects with coma after traumatic brain injury, ischaemic/haemorrhagic stroke, cardiac arrest, status epilepticus) were excluded from these studies. Therefore, whether the new paradigm of minimal sedation can be translated to the neuro-ICU (NICU) is unclear. In patients with ABI, sedation has ‘general’ indications (control of anxiety, pain, discomfort, agitation, facilitation of mechanical ventilation) and ‘neuro-specific’ indications (reduction of cerebral metabolic demand, improved brain tolerance to ischaemia). Sedation also is an essential therapeutic component of intracranial pressure therapy, targeted temperature management and seizure control. Given the lack of large trials which have evaluated clinically relevant endpoints, sedative selection depends on the effect of each agent on cerebral and systemic haemodynamics. Titration and withdrawal of sedation in the NICU setting has to be balanced between the risk that interrupting sedation might exacerbate brain injury (e.g. intracranial pressure elevation) and the potential benefits of enhanced neurological function and reduced complications. In this review, we provide a concise summary of cerebral physiologic effects of sedatives and analgesics, the advantages/disadvantages of each agent, the comparative effects of standard sedatives (propofol and midazolam) and the emerging role of alternative drugs (ketamine). We suggest a pragmatic approach for the use of sedation-analgesia in the NICU, focusing on some practical aspects, including optimal titration and management of sedation withdrawal according to ABI severity.

Concepts: Intracranial pressure, Sedative, Stroke, Neurology, Benzodiazepine, Midazolam, Sedation, Traumatic brain injury

12

Mechanically ventilated patients may receive more sedation during the night than during the day, potentially delaying extubation. We compared nighttime and daytime benzodiazepine and opioid administration in adult patients enrolled in a multicenter sedation trial comparing protocolized sedation alone or protocolized sedation combined with daily sedation interruption; and we evaluated whether nighttime and daytime doses were associated with liberation from mechanical ventilation.

Concepts: Time in astronomy, Mechanical, Night, Midazolam, Mechanical ventilation