Discover the most talked about and latest scientific content & concepts.

Concept: Microstructure


Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts.

Concepts: Light, Structure, Hierarchy, Chemical synthesis, Photocatalysis, Photocatalytic water splitting, Visible spectrum, Microstructure


For more than one century, hydrogen assisted degradation of metallic microstructures has been identified as origin for severe technical component failures but the mechanisms behind have not yet been completely understood so far. Any in-situ observation of hydrogen transport phenomena in microstructures will provide more details for further elucidation of these degradation mechanisms. A novel experiment is presented which is designed to elucidate the permeation behaviour of deuterium in a microstructure of duplex stainless steel (DSS). A hydrogen permeation cell within a TOF-SIMS instrument enables electrochemical charging with deuterium through the inner surface of the cell made from DSS. The outer surface of the DSS permeation cell exposed to the vacuum has been imaged by TOF-SIMS vs. increasing time of charging with subsequent chemometric treatment of image data. This in-situ experiment showed evidently that deuterium is permeating much faster through the ferrite phase than through the austenite phase. Moreover, a direct proof for deuterium enrichment at the austenite-ferrite interface has been found.

Concepts: Iron, Metallurgy, Steel, Austenite, Stainless steel, Nickel, Corrosion, Microstructure


Graphene-based three-dimensional porous macrostructures are believed of great importance in various applications, e.g. supercapacitors, photovoltaic cells, sensors and high-efficiency sorbents. However, to precisely control the microstructures and properties of this material to meet different application requirements in industrial practice remains challenging. We herein propose a facile and highly effective strategy for large-range tailoring the porous architecture and its properties by a modified freeze casting process. The pore sizes and wall thicknesses of the porous graphene can be gradually tuned by 80 times (from 10 to 800 μm) and 4000 times (from 20 nm to 80 μm), respectively. The property experiences the changing from hydrophilic to hydrophobic, with the Young’s Modulus varying by 15 times. The fundamental principle of the porous microstructure evolution is discussed in detail. Our results demonstrate a very convenient and general protocol to finely tailor the structure and further benefit the various applications of porous graphene.

Concepts: Materials science, Photovoltaics, Metallurgy, Young's modulus, Property, Tailor, Microstructure, Ceramography


The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

Concepts: Carbon, Materials science, Learning, Steel, Carbon steel, A36 steel, Microstructure, Ceramography


Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties.

Concepts: Mathematics, Physics, Engineering, Materials science, Design, Metallurgy, Microstructure, Ceramography


Inspired by the imbricated scale-tissue flexible armor of elasmoid fish, we design hybrid stiff plate/soft matrix material architectures and reveal their ability to provide protection against penetration while preserving flexibility. Indentation and bending tests on bio-inspired 3D-printed prototype materials show that both protection and flexibility are highly tunable by geometrical parameters of the microstructure (plate inclination angle and volume fraction). We show that penetration resistance can be amplified by a factor of 40, while flexibility decreases in less than 5 times. Different deformation resistance mechanisms are found to govern flexibility (inter-plate matrix shear) versus penetration resistance (localized plate bending) for this microstructural architecture which, in turn, enables separation of these functional requirements in the material design. These experiments identify the tradeoffs between these typically conflicting properties as well as the ability to design the most protective material architecture for a required flexibility, providing new design guidelines for enhanced flexible armor systems.

Concepts: Thermodynamics, Engineering, Materials science, Metallurgy, Architecture, Requirements analysis, Microstructure, Ceramography


Polymer-based bioresorbable scaffolds (BRS) seek to eliminate long-term complications of metal stents. However, current BRS designs bear substantially higher incidence of clinical failures, especially thrombosis, compared with metal stents. Research strategies inherited from metal stents fail to consider polymer microstructures and dynamics–issues critical to BRS. Using Raman spectroscopy, we demonstrate microstructural heterogeneities within polymeric scaffolds arising from integrated strain during fabrication and implantation. Stress generated from crimping and inflation causes loss of structural integrity even before chemical degradation, and the induced differences in crystallinity and polymer alignment across scaffolds lead to faster degradation in scaffold cores than on the surface, which further enlarge localized deformation. We postulate that these structural irregularities and asymmetric material degradation present a response to strain and thereby clinical performance different from metal stents. Unlike metal stents which stay patent and intact until catastrophic fracture, BRS exhibit loss of structural integrity almost immediately upon crimping and expansion. Irregularities in microstructure amplify these effects and can have profound clinical implications. Therefore, polymer microstructure should be considered in earliest design stages of resorbable devices, and fabrication processes must be well-designed with microscopic perspective.

Concepts: Spectroscopy, Polymer, Raman spectroscopy, Materials science, Solid mechanics, Scaffolding, Microstructure, Ceramography


The precise spatiotemporal delivery of nanoparticles from polymeric capsules is required for applications ranging from medicine to materials science. These capsules derive key performance aspects from their overall shape and dimensions, porosity, and internal microstructure. To this effect, microfluidics provide an exceptional platform for emulsification and subsequent capsule formation. However, facile and robust approaches for nanocomposite capsule fabrication, exhibiting triggered nanoparticle release, remain elusive because of the complex coupling of polymer-nanoparticle phase behavior, diffusion, phase inversion, and directional solidification. We investigate a model system of polyelectrolyte sodium poly(styrene sulfonate) and 22-nm colloidal silica and demonstrate a robust capsule morphology diagram, achieving a range of internal morphologies, including nucleated and bicontinuous microstructures, as well as isotropic and non-isotropic external shapes. Upon dissolution in water, we find that capsules formed with either neat polymers or neat nanoparticles dissolve rapidly and isotropically, whereas bicontinuous, hierarchical, composite capsules dissolve via directional pulses of nanoparticle clusters without disrupting the scaffold, with time scales tunable from seconds to hours. The versatility, facile assembly, and response of these nanocomposite capsules thus show great promise in precision delivery.

Concepts: Nanoparticle, Condensed matter physics, Nanomaterials, Sol-gel, Colloid, Emulsion, Materials science, Microstructure


Osteohistological researches on dinosaurs are well documented, but descriptions of direct correlations between the bone microstructure and corresponding nanostructure are currently lacking. By applying correlative microscopy, we aimed to verify that well-preserved osteohistological features correlate with pristine fossil bone nanostructures from the femoral bones of Koreanosaurus boseongensis. The quality of nanostructural preservation was evaluated based on the preferred orientation level of apatite crystals obtained from selected area electron diffraction (SAED) patterns and by measuring the “arcs” from the {100} and {002} diffraction rings. Unlike our expectations, our results revealed that well-preserved microstructures do not guarantee pristine nanostructures and vice versa. Structural preservation of bone from macro- to nanoscale primarily depends on original bioapatite density, and subsequent taphonomical factors such as effects from burial, pressure, influx of external elements and the rate of diagenetic alteration of apatite crystals. Our findings suggest that the efficient application of SAED analysis opens the opportunity for comprehensive nanostructural investigations of bone.

Concepts: Bone, Fundamental physics concepts, Correlation and dependence, Materials science, Fossil, Dinosaur, Nanostructure, Microstructure


Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft-hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5.

Concepts: Electromagnetism, Magnetic field, Electric field, Electric current, Magnetism, Materials science, Baseband, Microstructure