Discover the most talked about and latest scientific content & concepts.

Concept: Microorganism


Dispersal of microbes between humans and the built environment can occur through direct contact with surfaces or through airborne release; the latter mechanism remains poorly understood. Humans emit upwards of 10(6) biological particles per hour, and have long been known to transmit pathogens to other individuals and to indoor surfaces. However it has not previously been demonstrated that humans emit a detectible microbial cloud into surrounding indoor air, nor whether such clouds are sufficiently differentiated to allow the identification of individual occupants. We used high-throughput sequencing of 16S rRNA genes to characterize the airborne bacterial contribution of a single person sitting in a sanitized custom experimental climate chamber. We compared that to air sampled in an adjacent, identical, unoccupied chamber, as well as to supply and exhaust air sources. Additionally, we assessed microbial communities in settled particles surrounding each occupant, to investigate the potential long-term fate of airborne microbial emissions. Most occupants could be clearly detected by their airborne bacterial emissions, as well as their contribution to settled particles, within 1.5-4 h. Bacterial clouds from the occupants were statistically distinct, allowing the identification of some individual occupants. Our results confirm that an occupied space is microbially distinct from an unoccupied one, and demonstrate for the first time that individuals release their own personalized microbial cloud.

Concepts: Archaea, Bacteria, Organism, Microbiology, Ribosomal RNA, Biotechnology, 16S ribosomal RNA, Microorganism


Scaling laws underpin unifying theories of biodiversity and are among the most predictively powerful relationships in biology. However, scaling laws developed for plants and animals often go untested or fail to hold for microorganisms. As a result, it is unclear whether scaling laws of biodiversity will span evolutionarily distant domains of life that encompass all modes of metabolism and scales of abundance. Using a global-scale compilation of ∼35,000 sites and ∼5.6⋅10(6) species, including the largest ever inventory of high-throughput molecular data and one of the largest compilations of plant and animal community data, we show similar rates of scaling in commonness and rarity across microorganisms and macroscopic plants and animals. We document a universal dominance scaling law that holds across 30 orders of magnitude, an unprecedented expanse that predicts the abundance of dominant ocean bacteria. In combining this scaling law with the lognormal model of biodiversity, we predict that Earth is home to upward of 1 trillion (10(12)) microbial species. Microbial biodiversity seems greater than ever anticipated yet predictable from the smallest to the largest microbiome.

Concepts: Photosynthesis, Archaea, Bacteria, Organism, Life, Eukaryote, Species, Microorganism


Microbial communities are ubiquitous in both natural and artificial environments. However, microbial diversity is usually reduced under strong selection pressures, such as those present in habitats rich in recalcitrant or toxic compounds displaying antimicrobial properties. Caffeine is a natural alkaloid present in coffee, tea and soft drinks with well-known antibacterial properties. Here we present the first systematic analysis of coffee machine-associated bacteria. We sampled the coffee waste reservoir of ten different Nespresso machines and conducted a dynamic monitoring of the colonization process in a new machine. Our results reveal the existence of a varied bacterial community in all the machines sampled, and a rapid colonisation process of the coffee leach. The community developed from a pioneering pool of enterobacteria and other opportunistic taxa to a mature but still highly variable microbiome rich in coffee-adapted bacteria. The bacterial communities described here, for the first time, are potential drivers of biotechnologically relevant processes including decaffeination and bioremediation.

Concepts: Natural selection, Bacteria, Microbiology, Biotechnology, Coffee, Caffeine, Tea, Microorganism


Manned space flight induces a reduction in immune competence among crew and is likely to cause deleterious changes to the composition of the gastrointestinal, nasal, and respiratory bacterial flora, leading to an increased risk of infection. The space flight environment may also affect the susceptibility of microorganisms within the spacecraft to antibiotics, key components of flown medical kits, and may modify the virulence characteristics of bacteria and other microorganisms that contaminate the fabric of the International Space Station and other flight platforms. This review will consider the impact of true and simulated microgravity and other characteristics of the space flight environment on bacterial cell behavior in relation to the potential for serious infections that may appear during missions to astronomical objects beyond low Earth orbit.

Concepts: Bacteria, Antibiotic, Microorganism, International Space Station, Space exploration, Human spaceflight, Spaceflight, Satellite


Several recent studies hint at shared patterns in decision-making between taxonomically distant organisms, yet few studies demonstrate and dissect mechanisms of decision-making in simpler organisms. We examine decision-making in the unicellular slime mould Physarum polycephalum using a classical decision problem adapted from human and animal decision-making studies: the two-armed bandit problem. This problem has previously only been used to study organisms with brains, yet here we demonstrate that a brainless unicellular organism compares the relative qualities of multiple options, integrates over repeated samplings to perform well in random environments, and combines information on reward frequency and magnitude in order to make correct and adaptive decisions. We extend our inquiry by using Bayesian model selection to determine the most likely algorithm used by the cell when making decisions. We deduce that this algorithm centres around a tendency to exploit environments in proportion to their reward experienced through past sampling. The algorithm is intermediate in computational complexity between simple, reactionary heuristics and calculation-intensive optimal performance algorithms, yet it has very good relative performance. Our study provides insight into ancestral mechanisms of decision-making and suggests that fundamental principles of decision-making, information processing and even cognition are shared among diverse biological systems.

Concepts: Bacteria, Decision making, Biology, Organism, Eukaryote, Microorganism, Computational complexity theory, Physarum polycephalum


Routine antimicrobial susceptibility testing (AST) can prevent deaths due to bacteria and reduce the spread of multi-drug-resistance, but cannot be regularly performed in resource-limited-settings due to technological challenges, high-costs, and lack of trained professionals. We demonstrate an automated and cost-effective cellphone-based 96-well microtiter-plate (MTP) reader, capable of performing AST without the need for trained diagnosticians. Our system includes a 3D-printed smartphone attachment that holds and illuminates the MTP using a light-emitting-diode array. An inexpensive optical fiber-array enables the capture of the transmitted light of each well through the smartphone camera. A custom-designed application sends the captured image to a server to automatically determine well-turbidity, with results returned to the smartphone in ~1 minute. We tested this mobile-reader using MTPs prepared with 17 antibiotics targeting Gram-negative bacteria on clinical isolates of Klebsiella pneumoniae, containing highly-resistant antimicrobial profiles. Using 78 patient isolate test-plates, we demonstrated that our mobile-reader meets the FDA-defined AST criteria, with a well-turbidity detection accuracy of 98.21%, minimum-inhibitory-concentration accuracy of 95.12%, and a drug-susceptibility interpretation accuracy of 99.23%, with no very major errors. This mobile-reader could eliminate the need for trained diagnosticians to perform AST, reduce the cost-barrier for routine testing, and assist in spatio-temporal tracking of bacterial resistance.

Concepts: Bacteria, Microbiology, Antibiotic resistance, Escherichia coli, Performance, Microorganism, Gram negative bacteria, Chloramphenicol


The human gut harbors thousands of bacterial taxa. A profusion of metagenomic sequence data has been generated from human stool samples in the last few years, raising the question of whether more taxa remain to be identified. We assessed metagenomic data generated by the Human Microbiome Project Consortium to determine if novel taxa remain to be discovered in stool samples from healthy individuals. To do this, we established a rigorous bioinformatics pipeline that uses sequence data from multiple platforms (Illumina GAIIX and Roche 454 FLX Titanium) and approaches (whole-genome shotgun and 16S rDNA amplicons) to validate novel taxa. We applied this approach to stool samples from 11 healthy subjects collected as part of the Human Microbiome Project. We discovered several low-abundance, novel bacterial taxa, which span three major phyla in the bacterial tree of life. We determined that these taxa are present in a larger set of Human Microbiome Project subjects and are found in two sampling sites (Houston and St. Louis). We show that the number of false-positive novel sequences (primarily chimeric sequences) would have been two orders of magnitude higher than the true number of novel taxa without validation using multiple datasets, highlighting the importance of establishing rigorous standards for the identification of novel taxa in metagenomic data. The majority of novel sequences are related to the recently discovered genus Barnesiella, further encouraging efforts to characterize the members of this genus and to study their roles in the microbial communities of the gut. A better understanding of the effects of less-abundant bacteria is important as we seek to understand the complex gut microbiome in healthy individuals and link changes in the microbiome to disease.

Concepts: Archaea, Health, Bacteria, Gut flora, Microbiology, Full genome sequencing, Microorganism, Human flora


Taxonomists have been tasked with cataloguing and quantifying the Earth’s biodiversity. Their progress is measured in code-compliant species descriptions that include text, images, type material and molecular sequences. It is from this material that other researchers are to identify individuals of the same species in future observations. It has been estimated that 13% to 22% (depending on taxonomic group) of described species have only ever been observed once. Species that have only been observed at the time and place of their original description are referred to as oncers. Oncers are important to our current understanding of biodiversity. They may be validly described species that are members of a rare biosphere, or they may indicate endemism, or that these species are limited to very constrained niches. Alternatively, they may reflect that taxonomic practices are too poor to allow the organism to be re-identified or that the descriptions are unknown to other researchers. If the latter are true, our current tally of species will not be an accurate indication of what we know. In order to investigate this phenomenon and its potential causes, we examined the microbial eukaryote genus Gymnodinium. This genus contains 268 extant species, 103 (38%) of which have not been observed since their original description. We report traits of the original descriptions and interpret them in respect to the status of the species. We conclude that the majority of oncers were poorly described and their identity is ambiguous. As a result, we argue that the genus Gymnodinium contains only 234 identifiable species. Species that have been observed multiple times tend to have longer descriptions, written in English. The styles of individual authors have a major effect, with a few authors describing a disproportionate number of oncers. The information about the taxonomy of Gymnodinium that is available via the internet is incomplete, and reliance on it will not give access to all necessary knowledge. Six new names are presented - Gymnodinium campbelli for the homonymous name Gymnodinium translucens Campbell 1973, Gymnodinium antarcticum for the homonymous name Gymnodinium frigidum Balech 1965, Gymnodinium manchuriensis for the homonymous name Gymnodinium autumnale Skvortzov 1968, Gymnodinium christenum for the homonymous name Gymnodinium irregulare Christen 1959, Gymnodinium conkufferi for the homonymous name Gymnodinium irregulare Conrad & Kufferath 1954 and Gymnodinium chinensis for the homonymous name Gymnodinium frigidum Skvortzov 1968.

Concepts: Biodiversity, Organism, Species, Taxonomy, Genus, Microorganism, International Code of Zoological Nomenclature, Nomenclature


BACKGROUND: Despite advances in antimicrobial and surgical therapy, septic arthritis remains a rheumatologic emergency that can lead to rapid joint destruction and irreversible loss of function. In adults, Staphylococcus aureus is the most common microorganism isolated from native joints. Streptococcus gordonii is a prominent member of the viridans group of oral bacteria and is among the bacteria most frequently identified as being primary agent of subacute bacterial endocarditis. To the best of our knowledge, Streptococcus gordonii has not yet been described as agent of septic arthritis.Case PresentationWe describe here two cases of septic arthritis due to Streptococcus gordonii. It gives us an opportunity to review epidemiology, diagnosis criteria and management of septic arthritis. CONCLUSION: Although implication of S. gordonii as aetiologic agent of subacute endocarditis is well known, this organism is a rare cause of septic arthritis. In this case, the exclusion of associated endocarditis is warranted.

Concepts: DNA, Bacteria, Organism, Microbiology, Staphylococcus aureus, Staphylococcus, Microorganism, Septic arthritis


Aerosolized microorganisms may play an important role in climate change, disease transmission, water and soil contaminants, and geographic migration of microbes. While it is known that bioaerosols are generated when bubbles break on the surface of water containing microbes, it is largely unclear how viable soil-based microbes are transferred to the atmosphere. Here we report a previously unknown mechanism by which rain disperses soil bacteria into the air. Bubbles, tens of micrometres in size, formed inside the raindrops disperse micro-droplets containing soil bacteria during raindrop impingement. A single raindrop can transfer 0.01% of bacteria on the soil surface and the bacteria can survive more than one hour after the aerosol generation process. This work further reveals that bacteria transfer by rain is highly dependent on the regional soil profile and climate conditions.

Concepts: Archaea, Water, Precipitation, Climate, Atmosphere, Microorganism, Aerosol, Soil contamination