SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Micronutrient

173

The prevalence of micronutrient deficiencies is higher in obese individuals compared to normal-weight people, probably because of inadequate eating habits but also due to increased demands among overweight persons, which are underestimated by dietary reference intakes (DRI) intended for the general population. We therefore evaluated the dietary micronutrient intake in obese individuals compared to a reference population and DRI recommendations. Furthermore, we determined the micronutrient status in obese subjects undergoing a standardized DRI-covering low-calorie formula diet to analyze if the DRI meet the micronutrient requirements of obese individuals.

Concepts: Nutrition, Person, Obesity, Overweight, Adipose tissue, Dieting, Micronutrient, Diets

111

Insufficient data exist for accurate estimation of global nutrient supplies. Commonly used global datasets contain key weaknesses: 1) data with global coverage, such as the FAO food balance sheets, lack specific information about many individual foods and no information on micronutrient supplies nor heterogeneity among subnational populations, while 2) household surveys provide a closer approximation of consumption, but are often not nationally representative, do not commonly capture many foods consumed outside of the home, and only provide adequate information for a few select populations. Here, we attempt to improve upon these datasets by constructing a new model-the Global Expanded Nutrient Supply (GENuS) model-to estimate nutrient availabilities for 23 individual nutrients across 225 food categories for thirty-four age-sex groups in nearly all countries. Furthermore, the model provides historical trends in dietary nutritional supplies at the national level using data from 1961-2011. We determine supplies of edible food by expanding the food balance sheet data using FAO production and trade data to increase food supply estimates from 98 to 221 food groups, and then estimate the proportion of major cereals being processed to flours to increase to 225. Next, we estimate intake among twenty-six demographic groups (ages 20+, both sexes) in each country by using data taken from the Global Dietary Database, which uses nationally representative surveys to relate national averages of food consumption to individual age and sex-groups; for children and adolescents where GDD data does not yet exist, average calorie-adjusted amounts are assumed. Finally, we match food supplies with nutrient densities from regional food composition tables to estimate nutrient supplies, running Monte Carlo simulations to find the range of potential nutrient supplies provided by the diet. To validate our new method, we compare the GENuS estimates of nutrient supplies against independent estimates by the USDA for historical US nutrition and find very good agreement for 21 of 23 nutrients, though sodium and dietary fiber will require further improvement.

Concepts: Nutrition, Eating, Nutrient, Food, Approximation, Estimation, Food security, Micronutrient

45

Although breakfast consumption is widely considered to be an important component of a healthy lifestyle, few UK studies have examined differences in nutrient intakes between breakfast consumers and breakfast skippers among children and adolescents. We investigated associations between breakfast skipping in 4-18-year-olds and their nutrient intakes using data from the UK’s National Diet and Nutrition Survey Rolling Programme. Dietary data were derived from 4-d estimated food diaries of 802 children aged 4-10 years and 884 children aged 11-18 years (1686 in total). Daily nutrient intakes of children with different breakfast habits were compared by one-way ANCOVA adjusting for relevant covariates (sex, age, ethnicity, equivalised household income and BMI). Within-person analysis was carried out on children with an irregular breakfast habit (n 879) comparing nutrient intakes on breakfast days with those on non-breakfast days using repeated measures ANCOVA. We observed that the overall nutritional profile of the children in terms of fibre and micronutrient intake was superior in frequent breakfast consumers (micronutrients: folate, Ca, Fe and I (P<0·01)) and, for the 4-10 years age group, on breakfast days (micronutrients: folate, vitamin C, Ca and I (P<0·01)). Also, significantly higher proportions of breakfast-consuming children met their reference nutrient intakes of folate, vitamin C, Ca, Fe and I compared with breakfast skippers (χ 2 analysis, P<0·001). Our study adds to the body of data linking breakfast consumption with higher quality dietary intake in school-age children, supporting the promotion of breakfast as an important element of a healthy dietary pattern in children.

Concepts: Nutrition, Nutrient, Vitamin, Essential nutrient, Dietary mineral, United Kingdom, Diet, Micronutrient

39

Nearly half of the world’s population obtains its daily calories from rice grains, which lack or have insufficient levels of essential micronutrients. The deficiency of micronutrients vital for normal growth is a global health problem, and iron, zinc and vitamin A deficiencies are the most prevalent ones. We developed rice lines expressing Arabidopsis NICOTIANAMINE SYNTHASE 1 (AtNAS1), bean FERRITIN (PvFERRITIN), bacterial CAROTENE DESATURASE (CRTI) and maize PHYTOENE SYNTHASE (ZmPSY) in a single genetic locus in order to increase iron, zinc and β-carotene content in the rice endosperm. NAS catalyzes the synthesis of nicotianamine (NA), which is a precursor of deoxymugeneic acid (DMA) iron and zinc chelators, and also chelate iron and zinc for long distance transport. FERRITIN provides efficient storage of up to 4500 iron ions. PSY catalyzes the conversion of GGDP to phytoene, and CRTI performs the function of desaturases required for the synthesis of β-carotene from phytoene. All transgenic rice lines have significantly increased β-carotene, iron, and zinc content in the polished rice grains. Our results establish a proof-of-concept for multi-nutrient enrichment of rice grains from a single genetic locus, thus offering a sustainable and effective approach to address different micronutrient deficiencies at once.

Concepts: Gene, Genetics, Nutrition, Chromosome, Dietary mineral, Zinc, Micronutrient, Rice

28

Proper nutrition, not simply adequate energetic intake, is needed to achieve optimal dance performance. However, little scientific research exists concerning nutrition in dance, and so, to propose nutritional guidelines for this field, recommendations need to be based mainly on studies done in other physically active groups. To diminish the risk of energy imbalance and associated disorders, dancers must consume at least 30 kcal/kg fat-free mass/day, plus the training energy expenditure. For macronutrients, a daily intake of 3 to 5 g carbohydrates/kg, 1.2 to 1.7 g protein/kg, and 20 to 35% of energy intake from fat can be recommended. Dancers may be at increased risk of poor micronutrient status due to their restricted energy intake; micronutrients that deserve concern are iron, calcium, and vitamin D. During training, dancers should give special attention to fluid and carbohydrate intake in order to maintain optimal cognition, motivation, and motor skill performance. For competition/stage performance preparation, it is also important to ensure that an adequate dietary intake is being achieved. Nutritional supplements that may help in achieving specific nutritional goals when dietary intake is inadequate include multivitamins and mineral, iron, calcium, and vitamin D supplements, sports drinks, sports bars, and liquid meal supplements. Caffeine can also be used as an ergogenic aid. It is important that dancers seek dietary advice from qualified specialists, since the pressure to maintain a low body weight and low body fat levels is high, especially in styles as ballet, and this can lead to an unbalanced diet and health problems if not correctly supervised.

Concepts: Metabolism, Nutrition, Obesity, Fat, Nutrient, Vitamin, Dietary mineral, Micronutrient

28

Vinasse is a residue that originates from the distillation of fuel alcohol. However, it contains a relative amount of nutrients. The aim of this work was to develop a nutritive solution using vinasse and to compare it with a commercial solution for the cultivation of lettuce, watercress and rocket. Vinasse obtained from juice must was decanted and filtered, followed by chemical analyses of the nutrients. A nutritive solution composed of 10% vinasse supplemented with nutrients was in agreement with the results of the chemical analyses (a similar amount of Furlani’s solution). Experiments were then performed in an NFT (Nutrient film technique) system. The treatments used the vinasse solution and a commercial solution constituted from a Yara Fertilizantes(®) product. The height of the aerial part and the number of leaves of the crops were evaluated at 7, 14, 21, 28, 35 and 42 days. In most crops, the results were very similar. The vinasse solution promoted a larger number of leaves in lettuce and the highest aerial part in watercress. For the rocket, there were no significant differences between the two solutions. In conclusion, a nutritive solution was developed using vinasse, and this solution provided suitable growth, which was higher in some cases, for the crops studied herein. This study shows the great potential of this technology as a rational alternative to vinasse disposal.

Concepts: Agriculture, Nutrition, Chemistry, Nutrient, Vitamin, Essential nutrient, Nitrogen, Micronutrient

25

The burden of micronutrient malnutrition is very high in India. Food fortification is one of the most cost-effective and sustainable strategies to deliver micronutrients to large population groups. Global Alliance for Improved Nutrition (GAIN) is supporting large-scale, voluntary, staple food fortification in Rajasthan and Madhya Pradesh because of the high burden of malnutrition, availability of industries capable of and willing to introduce fortified staples, consumption patterns of target foods and a conducive and enabling environment. High extraction wheat flour from roller flour mills, edible soybean oil and milk from dairy cooperatives were chosen as the vehicles for fortification. Micronutrients and levels of fortification were selected based on vehicle characteristics and consumption levels. Industry recruitment was done after a careful assessment of capability and willingness. Production units were equipped with necessary equipment for fortification. Staffs were trained in fortification and quality control. Social marketing and communication activities were carried out as per the strategy developed. A state food fortification alliance was formed in Madhya Pradesh with all relevant stakeholders. Over 260,000 MT of edible oil, 300,000 MT of wheat flour and 500,000 MT of milk are being fortified annually and marketed. Rajasthan is also distributing 840,000 MT of fortified wheat flour annually through its Public Distribution System and 1.1 million fortified Mid-day meals daily through the centralised kitchens. Concurrent monitoring in Rajasthan and Madhya has demonstrated high compliance with all quality standards in fortified foods.

Concepts: Nutrition, Milk, Food, Wheat, Maize, Flour, Micronutrient, States and territories of India

22

Micronutrient deficiencies are common in undernourished societies yet remain inadequately assessed due to the complexity and costs of existing assays. A plasma proteomics-based approach holds promise in quantifying multiple nutrient:protein associations that reflect biological function and nutritional status. To validate this concept, in plasma samples of a cohort of 500 6- to 8-y-old Nepalese children, we estimated cross-sectional correlations between vitamins A (retinol), D (25-hydroxyvitamin D), and E (α-tocopherol), copper, and selenium, measured by conventional assays, and relative abundance of their major plasma-bound proteins, measured by quantitative proteomics using 8-plex iTRAQ mass tags. The prevalence of low-to-deficient status was 8.8% (<0.70 μmol/L) for retinol, 19.2% (<50 nmol/L) for 25-hydroxyvitamin D, 17.6% (<9.3 μmol/L) for α-tocopherol, 0% (<10 μmol/L) for copper, and 13.6% (<0.6 μmol/L) for selenium. We identified 4705 proteins, 982 in >50 children. Employing a linear mixed effects model, we observed the following correlations: retinol:retinol-binding protein 4 (r = 0.88), 25-hydroxyvitamin D:vitamin D-binding protein (r = 0.58), α-tocopherol:apolipoprotein C-III (r = 0.64), copper:ceruloplasmin (r = 0.65), and selenium:selenoprotein P isoform 1 (r = 0.79), all P < 0.0001, passing a false discovery rate threshold of 1% (based on P value-derived q values). Individual proteins explained 34-77% (R(2)) of variation in their respective nutrient concentration. Adding second proteins to models raised R(2) to 48-79%, demonstrating a potential to explain additional variation in nutrient concentration by this strategy. Plasma proteomics can identify and quantify protein biomarkers of micronutrient status in undernourished children. The maternal micronutrient supplementation trial, from which data were derived as a follow-up activity, was registered at clinicaltrials.gov as NCT00115271.

Concepts: Proteins, Protein, Nutrition, Nutrient, Vitamins, Proteomics, Proteome, Micronutrient

16

This paper presents data from the English Channel area of Britain and Northern France on the spatial distribution of Lower to early Middle Palaeolithic pre-MIS5 interglacial sites which are used to test the contention that the pattern of the richest sites is a real archaeological distribution and not of taphonomic origin. These sites show a marked concentration in the middle-lower reaches of river valleys with most being upstream of, but close to, estimated interglacial tidal limits. A plant and animal database derived from Middle-Late Pleistocene sites in the region is used to estimate the potentially edible foods and their distribution in the typically undulating landscape of the region. This is then converted into the potential availability of macronutrients (proteins, carbohydrates, fats) and selected micronutrients. The floodplain is shown to be the optimum location in the nutritional landscape (nutriscape). In addition to both absolute and seasonal macronutrient advantages the floodplains could have provided foods rich in key micronutrients, which are linked to better health, the maintenance of fertility and minimization of infant mortality. Such places may have been seen as ‘good (or healthy) places’ explaining the high number of artefacts accumulated by repeated visitation over long periods of time and possible occupation. The distribution of these sites reflects the richest aquatic and wetland successional habitats along valley floors. Such locations would have provided foods rich in a wide range of nutrients, importantly including those in short supply at these latitudes. When combined with other benefits, the high nutrient diversity made these locations the optimal niche in northwest European mixed temperate woodland environments. It is argued here that the use of these nutritionally advantageous locations as nodal or central points facilitated a healthy variant of the Palaeolithic diet which permitted habitation at the edge of these hominins' range.

Concepts: Nutrition, Nutrient, Vitamin, Essential nutrient, Micronutrient, Pleistocene, Paleolithic, English Channel

14

Malnutrition is one of the biggest challenges of the 21st century, with one in three people in the world malnourished, combined with poor diets being the leading cause of the global burden of disease. Fish is an under-recognised and undervalued source of micronutrients, which could play a more significant role in addressing this global challenge. With rising pressures on capture fisheries, demand is increasingly being met from aquaculture. However, aquaculture systems are designed to maximise productivity, with little consideration for nutritional quality of fish produced. A global shift away from diverse capture species towards consumption of few farmed species, has implications for diet quality that are yet to be fully explored. Bangladesh provides a useful case study of this transition, as fish is the most important animal-source food in diets, and is increasingly supplied from aquaculture. We conducted a temporal analysis of fish consumption and nutrient intakes from fish in Bangladesh, using nationally representative household expenditure surveys from 1991, 2000 and 2010 (n = 25,425 households), combined with detailed species-level nutrient composition data. Fish consumption increased by 30% from 1991-2010. Consumption of non-farmed species declined by 33% over this period, compensated (in terms of quantity) by large increases in consumption of farmed species. Despite increased total fish consumption, there were significant decreases in iron and calcium intakes from fish (P<0.01); and no significant change in intakes of zinc, vitamin A and vitamin B12 from fish, reflecting lower overall nutritional quality of fish available for consumption over time. Our results challenge the conventional narrative that increases in food supply lead to improvements in diet and nutrition. As aquaculture becomes an increasingly important food source, it must embrace a nutrition-sensitive approach, moving beyond maximising productivity to also consider nutritional quality. Doing so will optimise the complementary role that aquaculture and capture fisheries play in improving nutrition and health.

Concepts: Nutrition, Obesity, Nutrient, Vitamin, Malnutrition, Micronutrient, Aquaculture, Wild fisheries