SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Microfluidics

148

Silver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV-vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV-vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers.

Concepts: Synthesis, Composite material, Silver, In situ, Microfluidics, Composite video, Aramid, Kevlar

147

THz spectroscopy is an emerging technique for studying the dynamics and interactions of cells and biomolecules, but many practical challenges still remain in experimental studies. We present a prototype of simple and inexpensive cell-trapping microfluidic chip for THz spectroscopic study of live cells. Cells are transported, trapped and concentrated into the THz exposure region by applying an AC bias signal while the chip maintains a steady temperature at 37 °C by resistive heating. We conduct some preliminary experiments on E. coli and T-cell solution and compare the transmission spectra of empty channels, channels filled with aqueous media only, and channels filled with aqueous media with un-concentrated and concentrated cells.

Concepts: Spectroscopy, Concentration, Chemistry, Microfluidics, Infrared, Lab-on-a-chip, Terahertz technology, Terahertz spectroscopy

147

We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices.

Concepts: Psychology, Fluid dynamics, Fluid mechanics, Viscosity, Liquid, Surface tension, Shear stress, Microfluidics

46

The translation of batch chemistries onto continuous flow platforms requires addressing the issues of consistent fluidic behaviour, channel fouling and high-throughput processing. Droplet microfluidic technologies reduce channel fouling and provide an improved level of control over heat and mass transfer to control reaction kinetics. However, in conventional geometries, the droplet size is sensitive to changes in flow rates. Here we report a three-dimensional droplet generating device that exhibits flow invariant behaviour and is robust to fluctuations in flow rate. In addition, the droplet generator is capable of producing droplet volumes spanning four orders of magnitude. We apply this device in a parallel network to synthesize platinum nanoparticles using an ionic liquid solvent, demonstrate reproducible synthesis after recycling the ionic liquid, and double the reaction yield compared with an analogous batch synthesis.

Concepts: Fluid dynamics, Nanotechnology, Solvent, Surface tension, Control theory, Ionic liquid, Microfluidics, Reaction rate

31

Microfluidics, a technology characterized by the engineered manipulation of fluids at the submillimetre scale, has shown considerable promise for improving diagnostics and biology research. Certain properties of microfluidic technologies, such as rapid sample processing and the precise control of fluids in an assay, have made them attractive candidates to replace traditional experimental approaches. Here we analyse the progress made by lab-on-a-chip microtechnologies in recent years, and discuss the clinical and research areas in which they have made the greatest impact. We also suggest directions that biologists, engineers and clinicians can take to help this technology live up to its potential.

Concepts: Present, Time, Science, Engineering, Nanotechnology, Microfluidics, Technology, Lab-on-a-chip

29

The blood-brain barrier (BBB) is a unique feature of the human body, preserving brain homeostasis and preventing toxic substances to enter the brain. However, in various neurodegenerative diseases, the function of the BBB is disturbed. Mechanisms of the breakdown of the BBB are incompletely understood and therefore a realistic model of the BBB is essential. We present here the smallest model of the BBB yet, using a microfluidic chip, and the immortalized human brain endothelial cell line hCMEC/D3. Barrier function is modulated both mechanically, by exposure to fluid shear stress, and biochemically, by stimulation with tumor necrosis factor alpha (TNF-α), in one single device. The device has integrated electrodes to analyze barrier tightness by measuring the transendothelial electrical resistance (TEER). We demonstrate that hCMEC/D3 cells could be cultured in the microfluidic device up to 7 days, and that these cultures showed comparable TEER values with the well-established Transwell assay, with an average (± SEM) of 36.9 Ω.cm(2) (± 0.9 Ω.cm(2)) and 28.2 Ω.cm(2) (± 1.3 Ω.cm(2)) respectively. Moreover, hCMEC/D3 cells on chip expressed the tight junction protein Zonula Occludens-1 (ZO-1) at day 4. Furthermore, shear stress positively influenced barrier tightness and increased TEER values with a factor 3, up to 120 Ω.cm(2). Subsequent addition of TNF-α decreased the TEER with a factor of 10, down to 12 Ω.cm(2). This realistic microfluidic platform of the BBB is very well suited to study barrier function in detail and evaluate drug passage to finally gain more insight into the treatment of neurodegenerative diseases.

Concepts: Brain, Human brain, Neurology, Culture, Shear stress, Tumor necrosis factor-alpha, Microfluidics, Blood-brain barrier

29

A critical early step in drug discovery is the screening of a chemical library. Typically, promising compounds are identified in a primary screen and then more fully characterized in a dose-response analysis with 7-10 data points per compound. Here, we describe a robust microfluidic approach that increases the number of data points to approximately 10,000 per compound. The system exploits Taylor-Aris dispersion to create concentration gradients, which are then segmented into picoliter microreactors by droplet-based microfluidics. The large number of data points results in IC(50) values that are highly precise (± 2.40% at 95% confidence) and highly reproducible (CV = 2.45%, n = 16). In addition, the high resolution of the data reveals complex dose-response relationships unambiguously. We used this system to screen a chemical library of 704 compounds against protein tyrosine phosphatase 1B, a diabetes, obesity, and cancer target. We identified a number of novel inhibitors, the most potent being sodium cefsulodine, which has an IC(50) of 27 ± 0.83 μM.

Concepts: Pharmacology, Cancer, Chemistry, Tyrosine kinase, Chemical compound, Microfluidics, Protein tyrosine phosphatase, PTEN

28

Microfluidic chips provide unparalleled control over droplets and jets, which have advanced all natural sciences. However, microfluidic applications could be vastly expanded by increasing the per-channel throughput and directly exploiting the output of chips for rapid additive manufacturing. We unlock these features with in-air microfluidics, a new chip-free platform to manipulate microscale liquid streams in the air. By controlling the composition and in-air impact of liquid microjets by surface tension-driven encapsulation, we fabricate monodisperse emulsions, particles, and fibers with diameters of 20 to 300 μm at rates that are 10 to 100 times higher than chip-based droplet microfluidics. Furthermore, in-air microfluidics uniquely enables module-based production of three-dimensional (3D) multiscale (bio)materials in one step because droplets are partially solidified in-flight and can immediately be printed onto a substrate. In-air microfluidics is cytocompatible, as demonstrated by additive manufacturing of 3D modular constructs with tailored microenvironments for multiple cell types. Its in-line control, high throughput and resolution, and cytocompatibility make in-air microfluidics a versatile platform technology for science, industry, and health care.

Concepts: Science, Colloid, Liquid, Surface tension, Drop, Microfluidics, Liquids, Lab-on-a-chip

28

We report the first demonstration of a microfluidic platform that captures the full physiological range of mass transport in 3-D tissue culture. The basis of our method used long microfluidic channels connected to both sides of a central microtissue chamber at different downstream positions to control the mass transport distribution within the chamber. Precise control of the Péclet number (Pe), defined as the ratio of convective to diffusive transport, over nearly five orders of magnitude (0.0056 to 160) was achieved. The platform was used to systematically investigate the role of physiological mass transport on vasculogenesis. We demonstrate, for the first time, that vasculogenesis can be independently stimulated by interstitial flow (Pe > 10) or hypoxic conditions (Pe < 0.1), and not by the intermediate state (normal living tissue). This simple platform can be applied to physiological and biological studies of 3D living tissue followed by pathological disease studies, such as cancer research and drug screening.

Concepts: Cancer, Biology, Histology, Diffusion, Ratio, English-language films, Microfluidics, Train station

28

A simplified method for measuring the fluidic resistance (R(fluidic)) of microfluidic channels is presented, in which the electrical resistance (R(elec)) of a channel filled with a conductivity standard solution can be measured and directly correlated to R(fluidic) using a simple equation. Although a slight correction factor could be applied in this system to improve accuracy, results showed that a standard voltage meter could be used without calibration to determine R(fluidic) to within 12% error. Results accurate to within 2% were obtained when a geometric correction factor was applied using these particular channels. When compared to standard flow rate measurements, such as meniscus tracking in outlet tubing, this approach provided a more straightforward alternative and resulted in lower measurement error. The method was validated using 9 different fluidic resistance values (from ∼40 to 600kPasmm(-3)) and over 30 separately fabricated microfluidic devices. Furthermore, since the method is analogous to resistance measurements with a voltage meter in electrical circuits, dynamic R(fluidic) measurements were possible in more complex microfluidic designs. Microchannel R(elec) was shown to dynamically mimic pressure waveforms applied to a membrane in a variable microfluidic resistor. The variable resistor was then used to dynamically control aqueous-in-oil droplet sizes and spacing, providing a unique and convenient control system for droplet-generating devices. This conductivity-based method for fluidic resistance measurement is thus a useful tool for static or real-time characterization of microfluidic systems.

Concepts: Measurement, Metrology, Test method, Microfluidics, Measuring instrument, Electrical measurements, Electrical resistance, Ohmmeter