SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Microbiology terms

167

Disease-causing bacteria of the genus Aeromonas are able to adhere to pipe materials, colonizing the surfaces and forming biofilms in water distribution systems. The aim of our research was to study how the modification of materials used commonly in the water industry can reduce bacterial cell attachment. Polyvinyl chloride and silicone elastomer surfaces were activated and modified with reactive organo-silanes by coupling or co-crosslinking silanes with the native material. Both the native and modified surfaces were tested using the bacterial strain Aeromonas hydrophila, which was isolated from the Polish water distribution system. The surface tension of both the native and modified surfaces was measured. To determine cell viability and bacterial adhesion two methods were used, namely plate count and luminometry. Results were expressed in colony-forming units (c.f.u.) and in relative light units (RLU) per cm(2). Almost all the chemically modified surfaces exhibited higher anti-adhesive and anti-microbial properties in comparison to the native surfaces. Among the modifying agents examined, poly[dimethylsiloxane-co-(N,N-dimethyl-N-n-octylammoniopropyl chloride) methylsiloxane)] terminated with hydroxydimethylsilyl groups (20 %) in silicone elastomer gave the most desirable results. The surface tension of this modifier, was comparable to the non-polar native surface. However, almost half of this value was due to the result of polar forces. In this case, in an adhesion analysis, only 1 RLU cm(-2) and less than 1 c.f.u. cm(-2) were noted. For the native gumosil, the results were 9,375 RLU cm(-2) and 2.5 × 10(8) c.f.u. cm(-2), respectively. The antibacterial activity of active organo-silanes was associated only with the carrier surface because no antibacterial compounds were detected in liquid culture media, in concentrations that were able to inhibit cell growth.

Concepts: Archaea, Bacteria, Microbiology, Materials science, Bacterial cell structure, Microbiology terms, Silicone rubber, Aeromonas

5

Efficient removal of biofilm from medical devices is a big challenge in healthcare to avoid hospital acquired infections, especially from delicate devices like flexible endoscopes which cannot be reprocessed using harsh chemicals or high temperatures. Therefore, milder solutions such as enzymatic cleaners have to be used, which need to be carefully developed to ensure efficacious performance.In vitrobiofilm in a 96-well plate system was used to select and optimize the formulation of novel enzymatic cleaners. Removal of the biofilm was quantified by Crystal Violet staining while the disinfecting properties were evaluated by BacTiter-Glo assay. Biofilm removal efficacy of the selected cleaner was further tested using the European standard for endoscope cleaning EN ISO 15883 and removal of artificial blood soil was investigated by treating TOSI® cleaning indicators. Using the established process a novel enzymatic endoscope cleaner was developed which removed 95% ofStaphylococcus aureusand 90% ofPseudomonas aeruginosabiofilm in the 96-well plate system. With a >99% reduction of colony forming units and >90% reduction of extracellular polymeric substances this cleaner enabled subsequent complete disinfection and fulfilled acceptance criteria of EN ISO 15883. Furthermore, it efficiently removed blood soil and significantly outperformed comparable commercial products. The cleaning performance was stable even after storage of the cleaner for 6 months. It was demonstrated that incorporation of appropriate enzymes into the cleaner enhanced the performance significantly.

Concepts: Protein, Bacteria, Enzyme, Redox, Biofilm, Enzyme assay, Microbiology terms, Benjamin Bratt

0

The bacterial strain Bacillus badius AK isolated from water hyacinth compost was investigated for biosorption characteristics in Pb(II) removal. Batch mode experiments depicted the optimum conditions for biosorption as pH at 4, the temperature of 30°C, 150 rpm of the rotational speed at biomass concentration of 20 mL with 1.7 × 10(16) colony forming unit per milliliter (CFU/mL) value, at 100-150 mg/L concentration of Pb(II). The bacterial biomass was used in its native and non-pretreated state, unlike the dried, freeze-dried or chemically treated biomass. The biosorption followed pseudo-second-order kinetics and isotherm fitted well to the Langmuir model. Maximum Pb(II) biosorption was observed at 1.7 × 10(16) CFU/mL. Influence of Pb(II) on the growth of bacterial biomass was examined by fitting the monod’s model. Specific growth rate and maximum specific growth rate of B. badius AK was observed as 0.05 and 2.54 h(-1), respectively; biomass yield coefficient was 11.81. The results indicated that bacterial biomass was efficient, robust and cheaper biosorbent for removal of Pb(II).

Concepts: Bacteria, Microbiology, Virus, Chemistry, Thermodynamics, Strain, Microbiology terms, Batch processing

0

The present study investigated the in vitro effect of lysozyme (0-1,000 µg/ml) on Candida albicans (C. albicans) biofilm development. Investigations were conducted on C. albicans ATCC 10231 and on 10 clinical isolates from dentures. Strains were cultured aerobically at 37˚C in Sabouraud broth. Yeast growth was evaluated by turbidimetry. Biofilm biomass was quantified on a polystyrene support by crystal violet staining and on acrylic surfaces by counts of colony forming units. Lysozyme affected biofilm formation to a greater extent than it affected growth. For the ATCC 10231 reference strain, lysozyme acted as a biofilm promotor on polystyrene at the highest concentration tested (1,000 µg/ml, non‑physiological). When the reference strain was investigated on acrylic resin support, lysozyme acted as a significant biofilm promotor on rough resin, but less on smooth resin. The attached biomass in the presence of physiological concentrations of lysozyme (10‑30 µg/ml) was significantly decreased compared with the hypothetical value of 100% using a one‑sample t‑test, but a comparison between the different lysozyme conditions using analysis of variance and post hoc tests did not reveal significant differences. In 10 wild strains, different patterns of biofilm formation on polystyrene were observed in the presence of lysozyme. Some strains, characterized by large amounts of biofilm formation in the presence of 1,000 µg/ml lysozyme, were poor biofilm producers at low concentrations of lysozyme. In contrast, some strains that were poor biofilm producers with a high lysozyme concentration were more inhibited by low concentrations of lysozyme. The present study emphasizes the need to develop strategies for biofilm control based on in vitro experiments, and to implement these in clinical trials prior to approval of hygiene products enriched with exocrine proteins, such as lysozyme. Further studies will extend these investigations to other Candida species, and to fungi and bacteria present in oral biofilms.

Concepts: Bacteria, Fungus, Yeast, Concentration, Pseudomonas aeruginosa, Biofilm, Analysis of variance, Microbiology terms

0

The use of cobalt chrome (CoCr) implants in spinal surgery has become increasingly popular. However, there have been no studies specifically comparing biofilm formation on CoCr with that of titanium-alloy spinal implants. The objective of this study was to compare the difference in propensity for biofilm formation between these two materials, as it specifically relates to spinal rods. Staphylococcus aureus subsp. Aureus (ATCC 6538) were incubated with two different types of spinal rods composed of either CoCr or titanium-alloy. The spinal rods were then subject to a trypsin wash to allow for isolation of the colonized organism and associated biofilms. The associated optical density values (OD) from the bacterial isolates were obtained and the bacterial solutions were plated on brain-heart infusion agar plates and the resultant colony-forming units (CFU) were counted. The OD values for the titanium-alloy rods were 1.105±0.096nm (mean±SD) and 1.040±0.026nm at 48hours and 96hours, respectively. In contrast, the OD values for the CoCr rods were 1.332±0.161nm and 1.115±0.207nm at 48 and 96hours, respectively (p<0.05). The CFU values were 1481±417/100mm(2) and 745±159/100mm(2) at 48 and 96hours, respectively for the titanium-alloy group. These values were significantly lower than the CFU values obtained from the CoCr group which were 2721±605/100mm(2) and 928±88/100mm(2) (p<0.001) at both 48 and 96hours respectively. Our findings, evaluating both the OD and CFU values, indicate that implants composed of CoCr had a higher proclivity towards biofilm formation compared to titanium-alloy implants.

Concepts: Comparison, Bacteria, Staphylococcus aureus, Staphylococcus, Pseudomonas aeruginosa, Biofilm, Comparisons, Microbiology terms

0

Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.

Concepts: Protein, Bacteria, Enzyme, Microbiology, Biofilm, Lactobacillus, Lactobacillus plantarum, Microbiology terms

0

The antimicrobial activity of taurolidine was compared with minocycline against microbial species associated with periodontitis (four single strains and a 12-species mixture). Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs), killing as well as activities on established and forming single-species biofilms and a 12-species biofilm were determined. The MICs of taurolidine against single species were always 0.31 mg/ml, the MBCs were 0.64mg/ml. The used mixed microbiota was less sensitive to taurolidine, MIC and the MBC was 2.5 mg/ml. The strains and the mixture were completely killed by 2.5 mg/ml taurolidine, whereas 256 μg/ml minocycline reduced the bacterial counts of the mixture by 5 log10 colony forming units (cfu). Coating the surface with 10 mg/ml taurolidine or 256 μg/ml minocycline prevented completely biofilm formation of P. gingivalis ATCC 33277 but not of A. actinomycetemcomitansY4 and the mixture. On 4.5 d old biofilms, taurolidine acted concentration dependent with a reduction by 5 log10 cfu (P. gingivalis ATCC 33277) and 7 log10 cfu (A. actinomycetemcomitans Y4) when applying 10 mg/ml. Minocycline decreased the cfu counts by 1 - 2 log10 cfu independent of the used concentration. The reduction of the cfu counts in the 4.5 d old multi-species biofilms was about 3 log10 cfu after application of any minocycline concentration and after using 10 mg/ml taurolidine. Taurolidine is active against species associated with periodontitis, even within biofilms. Nevertheless a complete elimination of complex biofilms by taurolidine seems to be impossible and underlines the importance of a mechanical removal of biofilms prior to application of taurolidine.

Concepts: Archaea, Bacteria, Microbiology, Electrochemistry, Chemical equilibrium, Biofilm, Microorganism, Microbiology terms

0

Antimicrobial photodynamic therapy (APDT) has gained increased attention as an alternative treatment approach in various medical fields. However, the effect of APDT using visible light plus water-filtered infrared-A (VIS + wIRA) on oral biofilms remains unexplored. For this purpose, initial and mature oral biofilms were obtained in situ; six healthy subjects wore individual upper jaw acrylic devices with bovine enamel slabs attached to their approximal sites for 2 hours or 3 days, respectively. The biofilms were incubated with 100 μg ml(-1) toluidine blue O (TB), or chlorine e6 (Ce6), and irradiated with VIS + wIRA with an energy density of 200 mW cm(-2) for 5 minutes. After cultivation, the colony forming units (CFU) of half of the treated biofilm samples were quantified, whereas following live/dead staining the other half of the samples were monitored by confocal laser scanning microscopy (CLSM). TB- and Ce6-mediated APDT yielded a significant decrease of up to 3.8 and 5.7 log10 CFU for initial and mature oral biofilms, respectively. Quantification of the stained photoinactivated microorganisms confirmed these results. Overall, CLSM revealed the diffusion of the tested photosensitizers into the deepest biofilm layers after exposure to APDT. In particular, Ce6-aided APDT presented elevated permeability and higher effectiveness in eradicating 89.62 % of biofilm bacteria compared to TB-aided APDT (82.25 %) after 3 days. In conclusion, antimicrobial photoinactivation using VIS + wIRA proved highly potent in eradicating oral biofilms. Since APDT excludes the development of microbial resistance, it could supplement the pharmaceutical treatment of periodontitis or periimplantitis.

Concepts: Archaea, Bacteria, Microbiology, Light, Biofilm, Microorganism, Visible spectrum, Microbiology terms

0

The objective of this study was to develop a method that combined nanoparticle-based immunomagnetic separation (IMS) with real-time loop-mediated isothermal amplification (LAMP) for the rapid detection of Vibrio parahaemolyticus. Magnetic nanoparticles were functionalized with monoclonal antibodies that were produced against flagella from V. parahaemolyticus to capture and separate the target cells from raw oysters. After optimization, the immunomagnetic nanoparticles (IMNPs) presented a capture efficiency of 87.3% for 10(5) colony-forming unit (CFU)/mL of V. parahaemolyticus using 2.5μg of IMNPs within 30min. Although a very low level of non-specific binding was seen among 8 non-V. parahaemolyticus Vibrio spp. and 5 non-Vibrio strains, the IMS-LAMP method identified 133 V. parahaemolyticus strains correctly without the amplification from 54 other strains. The detection limit was about 1.4×10(2)CFU/mL in pure culture and was unaffected by the presence of 10(8)CFU/mL of competing microflora. When applied in spiked oysters, the sensitivity was found to be 1.9×10(3)CFU/g without enrichment. After enrichment for 6-8h, the limit of detectability could be improved to 1.9 to 0.19CFU/g. Hence, the IMS-LAMP assay provided a rapid, simple, and cost-effective method for total V. parahaemolyticus detection. This method will have important implications in the rapid detection of contaminated food in the early stage before distribution.

Concepts: Bacteria, The Target, Oyster, Separation, Vibrio, Microbiology terms, Vibrio parahaemolyticus

0

Listeria monocytogenes is a foodborne pathogen that causes the potentially life-threatening illness listeriosis. Previously, a few clones of L. monocytogenes persisting in a cold-smoked fish processing plant were isolated from the plant’s products continuously. To evaluate the role of biofilms in the persistence of L. monocytogenes strains specific to this plant, the abilities of the persistent strain (PS) and transient strain (TS) of L. monocytogenes found in this plant to form biofilms were compared, as was resistance to the sanitizing effects of benzalkonium chloride (BC). The PS produced more biofilm than the TS in 48 h. The half-maximal effective concentration (EC50), the BC concentration at which the ATP bioluminescence of each bacterial strain decreased by 50 % relative to its maximum activity, was about 150-fold higher in the PS than in the TS. In contrast, when these values were measured in organisms in a planktonic state, the EC50 of the PS was only 2.2-fold higher than that of the TS. Extracellular polymeric substances (EPS) were extracted from biofilms, and the glucose content of these biofilms was determined with the phenol-sulfuric acid method to estimate the quantity of EPS. The total amount of EPS in the PS biofilm was higher than that in the TS biofilm. These findings suggest that the PS produces greater amounts of biofilm and EPS than the TS, which results in greater resistance of the PS to disinfectants. The persistence of the strain in the fish processing plant might be attributable to these properties.

Concepts: Archaea, Bacteria, Microbiology, Biofilm, Listeria monocytogenes, Listeria, Listeriosis, Microbiology terms