SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mexican Free-tailed Bat

179

The role of bats or any generalist predator in suppressing prey populations depends on the predator’s ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world’s most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth’s abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators.

Concepts: Insect, Predation, Ecology, Maize, Lepidoptera, Biological pest control, Moth, Mexican Free-tailed Bat

174

Interest in forecasting impacts of climate change have heightened attention in recent decades to how animals respond to variation in climate and weather patterns. One difficulty in determining animal response to climate variation is lack of long-term datasets that record animal behaviors over decadal scales. We used radar observations from the national NEXRAD network of Doppler weather radars to measure how group behavior in a colonially-roosting bat species responded to annual variation in climate and daily variation in weather over the past 11 years. Brazilian free-tailed bats (Tadarida brasiliensis) form dense aggregations in cave roosts in Texas. These bats emerge from caves daily to forage at high altitudes, which makes them detectable with Doppler weather radars. Timing of emergence in bats is often viewed as an adaptive trade-off between emerging early and risking predation or increased competition and emerging late which restricts foraging opportunities. We used timing of emergence from five maternity colonies of Brazilian free-tailed bats in south-central Texas during the peak lactation period (15 June-15 July) to determine whether emergence behavior was associated with summer drought conditions and daily temperatures. Bats emerged significantly earlier during years with extreme drought conditions than during moist years. Bats emerged later on days with high surface temperatures in both dry and moist years, but there was no relationship between surface temperatures and timing of emergence in summers with normal moisture levels. We conclude that emergence behavior is a flexible animal response to climate and weather conditions and may be a useful indicator for monitoring animal response to long-term shifts in climate.

Concepts: Weather, Emergence, Climate change, Meteorology, Cave, Radar, Mexican Free-tailed Bat, Weather radar

24

Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function - in this case bat population numbers - is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

Concepts: Biodiversity, Evolution, Ecology, Ecosystem, Bacillus thuringiensis, Insecticide, Mexican Free-tailed Bat, Molossidae

7

Bats play an important role in agroecology and are effective bioindicators of environmental conditions, but little is known about their fundamental migration ecology, much less how these systems are responding to global change. Some of the world’s largest bat populations occur during the summer in the south-central United States, when millions of pregnant females migrate from lower latitudes to give birth in communal maternity colonies. Despite a relatively large volume of research into these colonies, many fundamental questions regarding their abundance-including their intra- and interseasonal variability-remain unanswered, and even estimating the size of individual populations has been a long-running challenge. Overall, monitoring these bat populations at high temporal resolution (e.g., nightly) and across long time spans (e.g., decades) has been impossible. Here, we show 22 continuous years of nightly population counts at Bracken Cave, a large bat colony in south-central Texas, enabling the first climate-scale phenological analysis. Using quantitative radar monitoring, we found that spring migration and the summer reproductive cycle have advanced by approximately 2 weeks over the study period. Furthermore, we quantify the ongoing growth of a newly-established overwintering population that indicates a system-wide response to changing environmental conditions. Our observations reveal behavioral plasticity in bats' ability to adapt to changing resource availability, and provide the first long-term quantification of their response to a changing climate. As aerial insectivores, these changes in bat phenology and propensity for overwintering indicate probable shifts in prey availability, with clear implications for pest management across wider regional agrisystems.

Concepts: Reproduction, Biology, Ecology, Menstrual cycle, Immigration, Change, Bat, Mexican Free-tailed Bat

2

Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat’s calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.

Concepts: Ultrasound, Animal echolocation, Bat, Sonar, Flight, Microbat, Bats, Mexican Free-tailed Bat

0

High-altitude nocturnal insect migrations are ubiquitous and represent significant pulses of biomass, which impact large areas and multiple trophic levels, yet are difficult to study and poorly understood. Predation on migratory insects by high-flying bats provides potential for investigating flows of migratory insects across a landscape. Brazilian free-tailed bats, Tadarida brasiliensis, provide valuable ecosystem services by consuming migratory pests, and research suggests migratory insects are an important resource to bats in autumn. We sequenced insect DNA from bat feces collected during the 2010-2012 autumn migrations of insects over southern Texas, and tested the utility of predator-prey interactions for monitoring migratory insect populations by asking: 1) how extensively do bats consume migratory insects during autumn? (2) does the prey community reflect known drivers of insect migrations, e.g. cold fronts? and (3) are migratory insects increasingly important to bats when local food resources decline in autumn? Bats consumed at least 21 species of migratory insects and 44 species of agricultural pests. Prey community richness increased with cold front passage. Bats consumed migratory moths over the entire autumn season, and the proportion of migratory moths in the bat diet increased over the course of the autumn season in all 3 years. This study confirms extensive consumption of migratory insects by bats, links patterns in prey communities to mechanisms driving insect migration, and documents a novel approach to tracking patterns of migratory insect movement. As an important resource for T. brasiliensis in autumn, migratory insects provide stabilizing effects to the local animal community.

Concepts: Insect, Predation, Ecology, Lotka–Volterra equation, Bat, Moth, Mexican Free-tailed Bat, Insect migration

0

This report describes the identification and characterization of a novel circovirus using metagenomic approaches in respiratory fluid samples from Brazilian free-tailed bats (Tadarida brasiliensis). The genome and deduced protein sequences share low identity with another circovirus recovered in distantly related bats from China.

Concepts: DNA, Insect, Mammal, Animal echolocation, Bat, Microbat, Bats, Mexican Free-tailed Bat

0

Animal migrations generate large spatial and temporal fluctuations in biomass that provide a resource base for many predator-prey interactions. These interactions are often driven by continent-scale weather patterns and are difficult to study. Few studies have included migratory animals on more than a single trophic level or for periods spanning multiple entire seasons. We tracked migrations of three species of agricultural pest noctuid moths over the 2010-2012 autumn seasons as the moths traveled past a large colony of migratory Brazilian free-tailed bats (Tadarida brasiliensis) in Texas. Increases in moth abundance, mass of bats, and duration of bat activity outside of the cave were correlated with passage of cold fronts over the study area and related increases in northerly wind. Moth responses to weather patterns varied among species and seasons, but overall moth abundances were low in late summer and spiked after one or more cold front passages in September and October. Changes in bat mass and behavior appear to be consequences of bat migration, as cave use transitioned from summer maternity roost to autumn migratory stopover sites. Weather-driven migration is at considerable risk from climate change, and bat and moth responses to that change may have marked impacts on agricultural systems and bat ecosystem services. This article is protected by copyright. All rights reserved.

Concepts: Insect, Ecology, Climate, Weather, Autumn, Bat, Moth, Mexican Free-tailed Bat

0

Using metagenomic approaches, we identified a novel Torque teno virus from Brazilian free-tailed bats (Tadarida brasiliensis) (TT-TbV). The TT-TbV genome and deduced protein sequences share extremely low identity with known anelloviruses. Due to a high degree of phylogenetic divergence, such putative virus could not be allocated into any Anelloviridae genera.

Concepts: DNA, Protein, Gene, Evolution, Biology, Organism, Horizontal gene transfer, Mexican Free-tailed Bat

0

In January 2014, members of the Joint Base San Antonio (JBSA)-Lackland, Texas, preventive medicine and public health teams evaluated a U.S. Air Force basic training squadron for potential exposure in sleeping bays to rabies virus carried by Mexican free-tailed bats (Tadarida brasiliensis). Exposure to bats while asleep or otherwise unaware is an important risk factor for rabies in the United States. Over the past several decades, most indigenous human rabies infections in the United States have resulted from the bite of an infected bat, and the bite was not reported in more than half of the cases. Mexican free-tailed bats in Texas often carry rabies virus. Among 8,904 bats tested during 2001-2010, a total of 1,558 (18%) tested positive for rabies. To assess the risk to the Air Force trainees and identify those for whom rabies postexposure prophylaxis (PEP) might be indicated, Lackland preventive medicine and public health teams interviewed 922 persons (866 trainees and 56 instructors) and determined that PEP, consisting of human rabies immune globulin and the 4-dose vaccination series given over 14 days, was indicated for 200 persons (22%). This report describes the public health response to a mass indoor exposure to bats, including group-based rabies risk stratification, adverse reactions to PEP, and infestation remediation. These interventions can be considered for future mass exposures to bats.

Concepts: Immune system, Public health, Vaccination, Infection, United States, Rabies, United States Air Force, Mexican Free-tailed Bat