SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Metric system

71

Coastal Indigenous peoples rely on ocean resources and are highly vulnerable to ecosystem and economic change. Their challenges have been observed and recognized at local and regional scales, yet there are no global-scale analyses to inform international policies. We compile available data for over 1,900 coastal Indigenous communities around the world representing 27 million people across 87 countries. Based on available data at local and regional levels, we estimate a total global yearly seafood consumption of 2.1 million (1.5 million-2.8 million) metric tonnes by coastal Indigenous peoples, equal to around 2% of global yearly commercial fisheries catch. Results reflect the crucial role of seafood for these communities; on average, consumption per capita is 15 times higher than non-Indigenous country populations. These findings contribute to an urgently needed sense of scale to coastal Indigenous issues, and will hopefully prompt increased recognition and directed research regarding the marine knowledge and resource needs of Indigenous peoples. Marine resources are crucial to the continued existence of coastal Indigenous peoples, and their needs must be explicitly incorporated into management policies.

Concepts: Ethnic group, Kilogram, Overfishing, Indigenous Australians, Tonne, Indigenous peoples, Transformation of culture, Metric system

30

The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

Concepts: Economics, Chemical element, Battery, Cellulose, Chemical industry, Ton, Metric system, Hemicellulose

28

One of the most commonly employed water conservation strategies is to restrict lawn watering to limited times on specified days. Water managers typically assume that limiting the frequency and duration of lawn watering will reduce water use. Consequently, the effectiveness of water restrictions is often evaluated based on observed compliance to the specified schedule, whether or not actual reductions in water use are achieved. This assessment approach is more practical than quantifying the reduction in water use brought about by restrictions because quantification of lawn water use is hampered by difficulties in disaggregating the various components of residential water use. Dual meters to separately meter the portion of public supply devoted to lawn water use are rare, and for households that withdraw water from private wells, canals, or ponds for lawn watering, there is no record of such water use at all. As a consequence of this gap in water use data, compliance to a prescribed frequency of watering is often equated with effectiveness. In this paper we develop an alternative metric for evaluating the effectiveness of water restrictions and present a case study in a suburban area in Southeast Florida that illustrates some of the challenges of quantifying lawn water use and explores some of the limitations of day of the week water restrictions as a conservation strategy.

Concepts: Scientific method, Wavelength, Case study, Indian Reductions, Water conservation, Metre, Grass, Metric system

26

Transient transfection is a well-established method to rapidly express recombinant proteins from mammalian cells. Accelerating activity in biotherapeutic drug development, demand for protein-based reagents, vaccine research, and large initiatives in structural and functional studies of proteins have propelled the need to generate moderate to high amounts of recombinant proteins and other macromolecules in a flexible and rapid manner. Progress over the last 10-15 years has demonstrated that transient transfections can be reliably and readily scaled up to handle milliliters to tens of liters of cells in suspension culture and obtain milligrams to grams of recombinant protein in a process that requires only days to weeks. This review will summarize developments in this field, properties of the components of a transient expression system that enable maximal protein production, and detailed protocols for this application.

Concepts: DNA, Gene, Cell, Molecular biology, Escherichia coli, Kilogram, Transfection, Metric system

6

Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem. Expected final online publication date for the Annual Review of Marine Science Volume 9 is January 03, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Concepts: Oceanography, Greek loanwords, Plastic, Ocean, Marine debris, Marine biology, Tonne, Metric system

3

This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

Concepts: Agriculture, Ethanol, Economics, Biofuel, Ethanol fuel, Biodiesel, Bioenergy, Metric system

3

A total of 2,514,346 metric tons (Mt) of asbestos were imported into Spain from 1906 until the ban on asbestos in 2002. Our objective was to study pleural cancer mortality trends as an indicator of mesothelioma mortality and update mortality predictions for the periods 2011–2015 and 2016–2020 in Spain.

Concepts: Cancer, Mesothelioma, Asbestos, Tonne, Windows Update, Metric system

2

Livestock farming incurs large and varied environmental burdens, dominated by beef. Replacing beef with resource efficient alternatives is thus potentially beneficial, but may conflict with nutritional considerations. Here we show that protein-equivalent plant based alternatives to the beef portion of the mean American diet are readily devisable, and offer mostly improved nutritional profile considering the full lipid profile, key vitamins, minerals, and micronutrients. We then show that replacement diets require on average only 10% of land, 4% of greenhouse gas (GHG) emissions, and 6% of reactive nitrogen (Nr) compared to what the the replaced beef diet requires. Applied to 320 million Americans, the beef-to-plant shift can save 91 million cropland acres (and 770 million rangeland acres), 278 million metric ton CO2e, and 3.7 million metric ton Nr annually. These nationwide savings are 27%, 4% and 32% of the respective national environmental burdens.

Concepts: Nutrition, Fat, Dietary mineral, Arithmetic mean, Meat, Replacements, Replacement, Metric system

1

Palm oil consumption is potentially deleterious to human health, and its production has resulted in 11 million hectares of deforestation globally. Importing roughly 394,000 metric tons of palm oil in 2012 alone, the Burmese government has recently pushed for intensive oil palm development to sate domestic demand for consumption and become international market players. Given well-studied linkages between biodiversity loss and ecosystem instability, this study aims to characterize the nature of deforestation for oil palm production in Myanmar, its relationship to increased biodiversity loss, and contextualize the potential impacts of this loss on diets and human health in rural Myanmar.

Concepts: Health, Human, Biodiversity, Agriculture, Natural environment, Green Revolution, The Nature Conservancy, Metric system

1

From 1916-2011, an estimated total of 165,050,000 metric tonnes of titanium dioxide pigment were produced worldwide. Current safety regulations on the usage of the TiO2 pigment as an inactive ingredient additive in human food are based on legislation from 1969 and are arguably outdated. This paper compiles new research results to provide fresh data for potential risk re-assessment. However, even after 45 years, few scientific research reports have provided truly reliable data. For example, administration of very high doses of TiO2 is not relevant to daily human uptake. Nevertheless, since dose makes the poison, the literature provides a valuable source for understanding potential TiO2 toxicity after oral ingestion. Numerous scientific papers have observed that TiO2 can pass and be absorbed by the mammalian gastrointestinal tract; can bioconcentrate, bioaccumulate, and biomagnify in the tissues of mammals and other vertebrates; has a very limited elimination rate; and can cause histopathological and physiological changes in various organs of animals. Such action is contrary to the 1969 decision to approve the use of TiO2 as an inactive ingredient in human food without an established acceptable daily intake, stating that neither significant absorption nor tissue storage following ingestion of TiO2 was possible. Thus, relevant governmental agencies should reassess the safety of TiO2 as an additive in human food and consider establishing an acceptable maximum daily intake as a precautionary measure. Integr Environ Assess Manag © 2014 SETAC.

Concepts: Scientific method, Nutrition, Mammal, Titanium dioxide, Titanium, Pigment, Digestion, Metric system