Discover the most talked about and latest scientific content & concepts.

Concept: Methanogen


Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment technologies such as anaerobic digestion. In this study CH4 production rates were determined in 20 pig slurry and 11 cattle slurry samples collected beneath slatted floors on six representative farms; rates were determined within 24 h at temperatures close to the temperature in slurry pits at the time of collection. Methane production rates in pig and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source. Fractions of degradable volatile solids (VSd, kg kg-1 VS) were estimated using an aerobic biodegradability assay and total organic C analyses. The VSd in pig and cattle slurry averaged 0.51 and 0.33 kg kg-1 VS, and it was estimated that on average 43 and 28% of VSd in fresh excreta from pigs and cattle, respectively, had been lost at the time of sampling. An empirical model of CH4 emissions from slurry was reparameterised based on experimental results. A sensitivity analysis indicated that predicted CH4 emissions were highly sensitive to uncertainties in the value of lnA of the Arrhenius equation, but much less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential of treatments such as anaerobic digestion, are discussed.

Concepts: Carbon dioxide, Anaerobic digestion, Biogas, Methane, Methanogen, Landfill, Manure, Methanogenesis


Methylmercury (MeHg) production was compared among nine cultured methanogenic archaea that contain hgcAB, a gene pair that codes for mercury (Hg) methylation. The methanogens tested produced MeHg at inherently different rates, even when normalized to growth rate and Hg availability. Eight of the nine tested were capable of MeHg production greater than that of spent- and uninoculated-medium controls during batch culture growth. Methanococcoides methylutens, an hgcAB + strain with a fused gene pair, was unable to produce more MeHg than controls. Maximal conversion of Hg to MeHg through a full batch culture growth cycle for each species (except M. methylutens) ranged from 2 to >50% of the added Hg(II) or between 0.2 and 17 pmol of MeHg/mg of protein. Three of the species produced >10% MeHg. The ability to produce MeHg was confirmed in several hgcAB + methanogens that had not previously been tested (Methanocella paludicola SANAE, Methanocorpusculum bavaricum, Methanofollis liminatans GKZPZ, and Methanosphaerula palustris E1-9c). Maximal methylation was observed at low sulfide concentrations (<100 μM) and in the presence of 0.5 to 5 mM cysteine. For M. hollandica, the addition of up to 5 mM cysteine enhanced MeHg production and cell growth in a concentration-dependent manner. As observed for bacterial Hg methylators, sulfide inhibited MeHg production. An initial evaluation of sulfide and thiol impacts on bioavailability showed methanogens responding to Hg complexation in the same way as do Deltaproteobacteria The mercury methylation rates of several methanogens rival those of the better-studied Hg-methylating sulfate- and iron-reducing DeltaproteobacteriaIMPORTANCEArchaea, specifically methanogenic organisms, play a role in mercury methylation in nature, but their global importance to MeHg production and the subsequent risk to ecosystems are not known. Methanogenesis has been linked to Hg methylation in several natural habitats where methylmercury production incurs risk to people and ecosystems, including rice paddies and permafrost. In this study, we confirm that most methanogens carrying the hgcAB gene pair are capable of Hg methylation. We found that methylation rates vary inherently among hgcAB + methanogens but that several species are capable of MeHg production at rates that rival those of the better-know Hg-methylating sulfate- and iron-reducing bacteria. Methanogens may need to be considered equally with sulfate and iron reducers in evaluations of MeHg production in nature.

Concepts: DNA, Gene, Archaea, Bacteria, Anaerobic digestion, Methane, Methanogen, Methylmercury


Methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes the reversible production and consumption of the potent greenhouse gas methane. The α subunit of MCR (McrA) contains several unusual post-translational modifications, including a rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioviridamide, a thioamide-containing natural product, we hypothesized that the archaeal tfuA and ycaO genes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA from the methanogenic archaeon Methanosarcina acetivorans lacking tfuA and/or ycaO revealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Phenotypic characterization of the ∆ycaO-tfuA mutant revealed a severe growth rate defect on substrates with low free energy yields and at elevated temperatures (39°C - 45°C). Our analyses support a role for thioglycine in stabilizing the protein secondary structure near the active site.

Concepts: Gene, Archaea, Bacteria, Evolution, Amino acid, Anaerobic digestion, Methane, Methanogen


Consumption of methane by aerobic and anaerobic microbes governs the atmospheric level of this powerful greenhouse gas. Whereas a biochemical understanding of aerobic methanotrophy is well developed, a mechanistic understanding of anaerobic methanotrophy has been prevented by the unavailability of pure cultures. Here we report a biochemical investigation of Methanosarcina acetivorans, a methane-producing species capable of anaerobic methanotrophic growth dependent on reduction of Fe(III). Our findings support a pathway anchored by Fe(III)-dependent mechanisms for energy conservation driving endergonic reactions that are key to methanotrophic growth. The pathway is remarkably similar to pathways hypothesized for uncultured anaerobic methanotrophic archaea. The results contribute to an improved understanding of the methane cycle that is paramount to understanding human interventions influencing Earth’s climate. Finally, the pathway enables advanced development and optimization of biotechnologies converting methane to value-added products through metabolic engineering of M. acetivorans.

Concepts: Carbon dioxide, Archaea, Bacteria, Metabolism, Cellular respiration, Methane, Methanotroph, Methanogen


Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens' diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia.

Concepts: Archaea, Bacteria, Ribosomal RNA, 16S ribosomal RNA, Anaerobic digestion, Methane, Methanogen, Millipede


High salinity frequently causes inhibition and even failure in anaerobic digestion. To explore the impact of increasing NaCl concentrations on biogas production, and reveal the microbial community variations in response to high salinity stress, the Illumina high-throughput sequencing technology was employed. The results showed that a NaCl concentration of 20 g/L (H group) exhibited a similar level of VFAs and specific CO2 production rate with that in the blank group, thus indicating that the bacterial activity in acidogenesis might not be inhibited. However, the methanogenic activity in the H group was significantly affected compared with that in the blank group, causing a 42.2% decrease in CH4 production, a 37.12% reduction in the specific CH4 generation rate and a lower pH value. Illumina sequencing revealed that microbial communities between the blank and H groups were significantly different. Bacteroides, Clostridium and BA021 uncultured were the dominant species in the blank group while some halotolerant genera, such as Thermovirga, Soehngenia and Actinomyces, dominated and complemented the hydrolytic and acidogenetic abilities in the H group. Additionally, the most abundant archaeal species included Methanosaeta, Methanolinea, Methanospirillum and Methanoculleus in both groups, but hydrogenotrophic methanogens showed a lower resistance to high salinity than aceticlastic methanogens.

Concepts: Carbon dioxide, Archaea, Microbiology, PH, Anaerobic digestion, Biogas, Methane, Methanogen


Methanogenic archaea reside primarily in the rumen and the lower segments of the intestines of ruminants, where they utilize the reducing equivalents derived from rumen fermentation to reduce carbon dioxide, formic acid, or methylamines to methane (CH4). Research on methanogens in the rumen has attracted great interest in the last decade because CH4 emission from ruminants contributes to global greenhouse gas emission and represents a loss of feed energy. Some DNA-based phylogenetic studies have depicted a diverse and dynamic community of methanogens in the rumen. In the past decade, researchers have focused on elucidating the underpinning that determines and affects the diversity, composition, structure, and dynamics of methanogen community of the rumen. Concurrently, many researchers have attempted to develop and evaluate interventions to mitigate enteric CH4 emission. Although much work has been done using plant secondary metabolites, other approaches such as using nitrate and 3-nitrooxy propanol have also yielded promising results. Most of these antimethanogenic compounds or substances often show inconsistent results among studies and also lead to adverse effects on feed intake and digestion and other aspects of rumen fermentation when fed at doses high enough to achieve effective mitigation. This review provides a brief overview of the rumen methanogens and then an appraisal of most of the antimethanogenic compounds and substances that have been evaluated both in vitro and in vivo. Knowledge gaps and future research needs are also discussed with a focus on methanogens and methane mitigation.

Concepts: Carbon dioxide, Bacteria, Anaerobic digestion, Natural gas, Methane, Greenhouse gas, Global warming potential, Methanogen


Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results showed that the dual cropping of Azolla significantly suppressed the methane emissions from paddies, likely due to the increase in redox potential in the root region and dissolved oxygen concentration at the soil-water interface. Furthermore, the floodwater pH decreased in association with Azolla cultivation, which is also a factor significantly correlated with the decrease in methane emissions. An increase in methanotrophic bacteria population (pmoA gene copies) and a reduction in methanogenic archaea (16S rRNA gene copies) were observed in association with Azolla growth. During rice cultivation period, dual cropping of Azolla also intensified increasing trend of 1/Simpson of methanogens and significantly decreased species richness (Chao 1) and species diversity (1/Simpson, 1/D) of methanotrophs. These results clearly demonstrate the suppression of CH4 emissions by culturing Azolla and show the environmental and microbial responses in paddy soil under Azolla cultivation.

Concepts: Photosynthesis, Carbon dioxide, Archaea, Bacteria, Ribosomal RNA, 16S ribosomal RNA, Methane, Methanogen


Trace elements (TE) play an essential role in all organisms due to their functions in enzyme complexes. In anaerobic digesters, control, and supplementation of TEs lead to stable and more efficient methane production processes while TE deficits cause process imbalances. However, the underlying metabolic mechanisms and the adaptation of the affected microbial communities to such deficits are not yet fully understood. Here, we investigated the microbial community dynamics and resulting process changes induced by TE deprivation. Two identical lab-scale continuous stirred tank reactors fed with distiller’s grains and supplemented with TEs (cobalt, molybdenum, nickel, tungsten) and a commercial iron additive were operated in parallel. After 72 weeks of identical operation, the feeding regime of one reactor was changed by omitting TE supplements and reducing the amount of iron additive. Both reactors were operated for further 21 weeks. Various process parameters (biogas production and composition, total solids and volatile solids, TE concentration, volatile fatty acids, total ammonium nitrogen, total organic acids/alkalinity ratio, and pH) and the composition and activity of the microbial communities were monitored over the total experimental time. While the methane yield remained stable, the concentrations of hydrogen sulfide, total ammonia nitrogen, and acetate increased in the TE-depleted reactor compared to the well-supplied control reactor. Methanosarcina and Methanoculleus dominated the methanogenic communities in both reactors. However, the activity ratio of these two genera was shown to depend on TE supplementation explainable by different TE requirements of their energy conservation systems. Methanosarcina dominated the well-supplied anaerobic digester, pointing to acetoclastic methanogenesis as the dominant methanogenic pathway. Under TE deprivation, Methanoculleus and thus hydrogenotrophic methanogenesis was favored although Methanosarcina was not overgrown by Methanoculleus. Multivariate statistics revealed that the decline of nickel, cobalt, molybdenum, tungsten, and manganese most strongly influenced the balance of mcrA transcripts from both genera. Hydrogenotrophic methanogens seem to be favored under nickel- and cobalt-deficient conditions as their metabolism requires less nickel-dependent enzymes and corrinoid cofactors than the acetoclastic and methylotrophic pathways. Thus, TE supply is critical to sustain the activity of the versatile high-performance methanogen Methanosarcina.

Concepts: Archaea, Metabolism, Anaerobic digestion, Biogas, Hydrogen sulfide, Methane, Methanogen, Methanogenesis


Reindeer (Rangifer tarandus tarandus) are large Holarctic herbivores whose heterogeneous diet has led to the development of a unique gastrointestinal microbiota, essential for the digestion of arctic flora, which may include a large proportion of lichens during winter. Lichens are rich in plant secondary metabolites, which may affect members of the gut microbial consortium, such as the methane-producing methanogenic archaea. Little is known about the effect of lichen consumption on the rumen and cecum microbiotas and how this may affect methanogenesis in reindeer. Here, we examined the effects of dietary lichens on the reindeer gut microbiota, especially methanogens. Samples from the rumen and cecum were collected from two groups of reindeer, fed either lichens (Ld: n = 4), or a standard pelleted feed (Pd: n = 3). Microbial densities (methanogens, bacteria and protozoa) were quantified using quantitative real-time PCR and methanogen and bacterial diversities were determined by 454 pyrosequencing of the 16S rRNA genes. In general, the density of methanogens were not significantly affected (p>0.05) by the intake of lichens. Methanobrevibacter constituted the main archaeal genus (>95% of reads), with Mbr. thaueri CW as the dominant species in both groups of reindeer. Bacteria belonging to the uncharacterized Ruminococcaceae and the genus Prevotella were the dominant phylotypes in the rumen and cecum, in both diets (ranging between 16-38% total sequences). Bacteria belonging to the genus Ruminococcus (3.5% to 0.6%; p = 0.001) and uncharacterized phylotypes within the order Bacteroidales (8.4% to 1.3%; p = 0.027), were significantly decreased in the rumen of lichen-fed reindeer, but not in the cecum (p = 0.2 and p = 0.087, respectively). UniFrac-based analyses showed archaeal and bacterial libraries were significantly different between diets, in both the cecum and the rumen (vegan::Adonis: pseudo-F<0.05). Based upon previous literature, we suggest that the altered methanogen and bacterial profiles may account for expected lower methane emissions from lichen-fed reindeer.

Concepts: Archaea, Bacteria, Microbiology, Ribosomal RNA, Anaerobic digestion, Methane, Methanogen, Reindeer