SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Messenger RNA

167

Mizoribine monophosphate (MZP) is a specific inhibitor of the cellular inosine-5'-monophosphate dehydrogenase (IMPDH), the enzyme catalyzing the rate-limiting step of de novo guanine nucleotide biosynthesis. MZP is a highly potent antagonistic inhibitor of IMPDH that blocks the proliferation of T and B lymphocytes that use the de novo pathway of guanine nucleotide synthesis almost exclusively. In the present study, we investigated the ability of MZP to directly inhibit the human RNA capping enzyme (HCE), a protein harboring both RNA 5'-triphosphatase and RNA guanylyltransferase activities. HCE is involved in the synthesis of the cap structure found at the 5' end of eukaryotic mRNAs, which is critical for the splicing of the cap-proximal intron, the transport of mRNAs from the nucleus to the cytoplasm, and for both the stability and translation of mRNAs. Our biochemical studies provide the first insight that MZP can inhibit the formation of the RNA cap structure catalyzed by HCE. In the presence of MZP, the RNA 5'-triphosphatase activity appears to be relatively unaffected while the RNA guanylyltransferase activity is inhibited, indicating that the RNA guanylyltransferase activity is the main target of MZP inhibition. Kinetic studies reveal that MZP is a non-competitive inhibitor that likely targets an allosteric site on HCE. Mizoribine also impairs mRNA capping in living cells, which could account for the global mechanism of action of this therapeutic agent. Together, our study clearly demonstrates that mizoribine monophosphate inhibits the human RNA guanylyltransferase in vitro and impair mRNA capping in cellulo.

Concepts: DNA, Protein, Cell nucleus, Cell, RNA, Messenger RNA, Enzyme inhibitor, 5' cap

167

Aging is a complex process that is linked to an increased incidence of major diseases such as cardiovascular and neurodegenerative disease, but also cancer and immune disorders. MicroRNAs (miRNAs) are small non-coding RNAs, which post-transcriptionally control gene expression by inhibiting translation or inducing degradation of targeted mRNAs. MiRNAs target up to hundreds of mRNAs, thereby modulating gene expression patterns. Many miRNAs appear to be dysregulated during cellular senescence, aging and disease. However, only few miRNAs have been so far linked to age-related changes in cellular and organ functions. The present article will discuss these findings, specifically focusing on the cardiovascular and neurological systems.

Concepts: DNA, Gene, Gene expression, Cancer, Death, Senescence, Messenger RNA, Non-coding RNA

166

We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage.

Concepts: DNA, Gene, Genetics, Gene expression, RNA, Cell biology, Messenger RNA, Small interfering RNA

166

Transcription is an essential component of basic cellular and developmental processes. However, early embryonic development occurs in the absence of transcription and instead relies upon maternal mRNAs and proteins deposited in the egg during oocyte maturation. Although the early zebrafish embryo is competent to transcribe exogenous DNA, factors present in the embryo maintain genomic DNA in a state that is incompatible with transcription. The cell cycles of the early embryo titrate out these factors, leading to zygotic transcription initiation, presumably in response to a change in genomic DNA chromatin structure to a state that supports transcription. To understand the molecular mechanisms controlling this maternal to zygotic transition, it is important to distinguish between the maternal and zygotic transcriptomes during this period. Here we use exome sequencing and RNA-seq to achieve such discrimination and in doing so have identified the first zygotic genes to be expressed in the embryo. Our work revealed different profiles of maternal mRNA post-transcriptional regulation prior to zygotic transcription initiation. Finally, we demonstrate that maternal mRNAs are required for different modes of zygotic transcription initiation, which is not simply dependent on the titration of factors that maintain genomic DNA in a transcriptionally incompetent state.

Concepts: DNA, Protein, Gene, Genetics, Cell nucleus, Gene expression, Molecular biology, Messenger RNA

166

Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes. WIREs RNA 2013. doi: 10.1002/wrna.1172 For further resources related to this article, please visit the WIREs website.

Concepts: DNA, Protein, Gene, Cell nucleus, Bacteria, RNA, Ribosome, Messenger RNA

164

TFIIIB and TFIIIC are multi-subunit factors required for transcription by RNA polymerase III. We present a genome-wide high-resolution footprint map of TFIIIB-TFIIIC complexes in Saccharomyces cerevisiae, obtained by paired-end sequencing of micrococcal nuclease-resistant DNA. On tRNA genes, TFIIIB and TFIIIC form stable complexes with the same distinctive occupancy pattern but in mirror image, termed ‘bootprints’. Global analysis reveals that the TFIIIB-TFIIIC transcription complex exhibits remarkable structural elasticity: tRNA genes vary significantly in length but remain protected by TFIIIC. Introns, when present, are markedly less protected. The RNA polymerase III transcription terminator is flexibly accommodated within the transcription complex and, unexpectedly, plays a major structural role by delimiting its 3'-boundary. The ETC sites, where TFIIIC binds without TFIIIB, exhibit different bootprints, suggesting that TFIIIC forms complexes involving other factors. We confirm six ETC sites and report a new site (ETC10). Surprisingly, TFIIIC, but not TFIIIB, interacts with some centromeric nucleosomes, suggesting that interactions between TFIIIC and the centromere may be important in the 3D organization of the nucleus.

Concepts: DNA, Gene, Genetics, Gene expression, Transcription, Molecular biology, RNA, Messenger RNA

163

Lateralization is a fundamental principle of nervous system organization but its molecular determinants are mostly unknown. In humans, asymmetric gene expression in the fetal cortex has been suggested as the molecular basis of handedness. However, human fetuses already show considerable asymmetries in arm movements before the motor cortex is functionally linked to the spinal cord, making it more likely that spinal gene expression asymmetries form the molecular basis of handedness. We analyzed genome-wide mRNA expression and DNA methylation in cervical and anterior thoracal spinal cord segments of five human fetuses and show development-dependent gene expression asymmetries. These gene expression asymmetries were epigenetically regulated by miRNA expression asymmetries in the TGF-β signaling pathway and lateralized methylation of CpG islands. Our findings suggest molecular mechanisms for epigenetic regulation within the spinal cord constitute the starting point for handedness, implying a fundamental shift in our understanding of the ontogenesis of hemispheric asymmetries in humans.

Concepts: DNA, Gene, Gene expression, Cell, Epigenetics, RNA, Messenger RNA, DNA methylation

162

The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.Cell Research advance online publication 10 January 2014; doi:10.1038/cr.2014.3.

Concepts: DNA, Protein, Cell nucleus, Gene expression, Enzyme, RNA, Messenger RNA, Intron

157

Protein-coding genes with multiple alternative polyadenylation sites can generate mRNA 3'UTR sequences of different lengths, thereby causing the loss or gain of regulatory elements, which can affect stability, localization and translation efficiency. 3USS is a web-server developed with the aim of giving experimentalists the possibility to automatically identify alternative 3'UTRs (shorter or longer with respect to a reference transcriptome), an option that is not available in standard RNA-seq data analysis procedures. The tool reports as putative novel the 3'UTRs not annotated in available databases. Furthermore, if data from two related samples are uploaded, common and specific alternative 3'UTRs are identified and reported by the server. Availability: 3USS is freely available at http://www.biocomputing.it/3uss_server.

Concepts: DNA, Gene expression, RNA, Messenger RNA, Computer, Polyadenylation, Three prime untranslated region, Web server

148

Post-mortem tissues samples are a key resource for investigating patterns of gene expression. However, the processes triggered by death and the post-mortem interval (PMI) can significantly alter physiologically normal RNA levels. We investigate the impact of PMI on gene expression using data from multiple tissues of post-mortem donors obtained from the GTEx project. We find that many genes change expression over relatively short PMIs in a tissue-specific manner, but this potentially confounding effect in a biological analysis can be minimized by taking into account appropriate covariates. By comparing ante- and post-mortem blood samples, we identify the cascade of transcriptional events triggered by death of the organism. These events do not appear to simply reflect stochastic variation resulting from mRNA degradation, but active and ongoing regulation of transcription. Finally, we develop a model to predict the time since death from the analysis of the transcriptome of a few readily accessible tissues.

Concepts: DNA, Gene, Genetics, Gene expression, Transcription, RNA, Messenger RNA, RNA polymerase