SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mesenchymal stem cell

684

Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, “green” technology for regenerating large volume vascularized tissue mass.

Concepts: Stem cell, Plant, Mesenchymal stem cell, Bone marrow, Stem cells, Cell biology, Induced pluripotent stem cell, Pluripotency

186

Here, for the first time, we test a novel hypothesis that systemic treatment of stroke with exosomes derived from multipotent mesenchymal stromal cells (MSCs) promote neurovascular remodeling and functional recovery after stroke in rats. Adult male Wistar rats were subjected to 2 hours of middle cerebral artery occlusion (MCAo) followed by tail vein injection of 100 μg protein from MSC exosome precipitates or an equal volume of vehicle phosphate-buffered saline (PBS) (n=6/group) 24 hours later. Animals were killed at 28 days after stroke and histopathology and immunohistochemistry were employed to identify neurite remodeling, neurogenesis, and angiogenesis. Systemic administration of MSC-generated exosomes significantly improved functional recovery in stroke rats compared with PBS-treated controls. Axonal density and synaptophysin-positive areas were significantly increased along the ischemic boundary zone of the cortex and striatum in MCAo rats treated with exosomes compared with PBS control. Exosome treatment significantly increased the number of newly formed doublecortin (a marker of neuroblasts) and von Willebrand factor (a marker of endothelial cells) cells. Our results suggest that intravenous administration of cell-free MSC-generated exosomes post stroke improves functional recovery and enhances neurite remodeling, neurogenesis, and angiogenesis and represents a novel treatment for stroke.Journal of Cerebral Blood Flow & Metabolism advance online publication, 21 August 2013; doi:10.1038/jcbfm.2013.152.

Concepts: Atherosclerosis, Mesenchymal stem cell, Blood vessel, Middle cerebral artery, Endothelium, Cardiovascular system, Von Willebrand factor, Von Willebrand disease

176

Insulin-like growth factor 1 (IGF-1), the most abundant growth factor in the bone matrix, maintains bone mass in adulthood. We now report that IGF-1 released from the bone matrix during bone remodeling stimulates osteoblastic differentiation of recruited mesenchymal stem cells (MSCs) by activation of mammalian target of rapamycin (mTOR), thus maintaining proper bone microarchitecture and mass. Mice with knockout of the IGF-1 receptor (Igf1r) in their pre-osteoblastic cells showed lower bone mass and mineral deposition rates than wild-type mice. Further, MSCs from Igf1rflox/flox mice with Igf1r deleted by a Cre adenovirus in vitro, although recruited to the bone surface after implantation, were unable to differentiate into osteoblasts. We also found that the concentrations of IGF-1 in the bone matrix and marrow of aged rats were lower than in those of young rats and directly correlated with the age-related decrease in bone mass. Likewise, in age-related osteoporosis in humans, we found that bone marrow IGF-1 concentrations were 40% lower in individuals with osteoporosis than in individuals without osteoporosis. Notably, injection of IGF-1 plus IGF binding protein 3 (IGFBP3), but not injection of IGF-1 alone, increased the concentration of IGF-1 in the bone matrix and stimulated new bone formation in aged rats. Together, these results provide mechanistic insight into how IGF-1 maintains adult bone mass, while also providing a further rationale for its therapeutic targeting to treat age-related osteoporosis.

Concepts: Bone, Stem cell, Mesenchymal stem cell, Bone marrow, Skeletal system, Cellular differentiation, Insulin-like growth factor 1, Insulin-like growth factor

174

BACKGROUND: Stem cell injection therapies have been proposed to overcome the limited efficacy and adverse reactions of bulking agents. However, most have significant limitations, including painful procurement, requirement for anesthesia, donor site infection and a frequently low cell yield. Recently, human amniotic fluid stem cells (hAFSCs) have been proposed as an ideal cell therapy source. In this study, we investigated whether periurethral injection of hAFSCs can restore urethral sphincter competency in a mouse model. METHODS: Amniotic fluids were collected and harvested cells were analyzed for stem cell characteristics and in vitro myogenic differentiation potency. Mice underwent bilateral pudendal nerve transection to generate a stress urinary incontinence (SUI) model and received either periurethral injection of hAFSCs, periurethral injection of Plasma-Lyte (control group), or underwent a sham (normal control group). For in vivo cell tracking, cells were labeled with silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate (MNPs@SiO2 (RITC)) and were injected into the urethral sphincter region (n = 9). Signals were detected by optical imaging. Leak point pressure and closing pressure were recorded serially after injection. Tumorigenicity of hAFSCs was evaluated by implanting hAFSCs into the subcapsular space of the kidney, followed two weeks later by retrieval and histologic analysis. RESULTS: Flow activated cell sorting showed that hAFSCs expressed mesenchymal stem cell (MSC) markers, but no hematopoietic stem cell markers. Induction of myogenic differentiation in the hAFSCs resulted in expression of PAX7 and MYOD at Day 3, and DYSTROPHIN at Day 7. The nanoparticle-labeled hAFSCs could be tracked in vivo with optical imaging for up to 10 days after injection. Four weeks after injection, the mean LPP and CP were significantly increased in the hAFSC-injected group compared with the control group. Nerve regeneration and neuromuscular junction formation of injected hAFSCs in vivo was confirmed with expression of neuronal markers and acetylcholine receptor. Injection of hAFSCs caused no in vivo host CD8 lymphocyte aggregation or tumor formation. CONCLUSIONS: hAFSCs displayed MSC characteristics and could differentiate into cells of myogenic lineage. Periurethral injection of hAFSCs into an SUI animal model restored the urethral sphincter to apparently normal histology and function, in absence of immunogenicity and tumorigenicity.

Concepts: Gene expression, Developmental biology, Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells, Cell biology, Cellular differentiation

173

Multipotent mesenchymal stem cells (MSCs) are found in various tissues and can proliferate extensively in vitro. MSCs have been used in preclinical animal studies and clinical trials in many fields. Adipose derived stem cells (ASCs) have several advantages compared to other MSCs for use in cell-based treatments because they are easy to isolate with relative abundance. However, quantitative approaches for wound repair using ASCs have been limited because of lack of animal models which allow for quantification. Here, we addressed the effect of topically delivered ASCs in wound repair by quantitative analysis using the rabbit ear model. We characterized rabbit ASCs, and analyzed their multipotency in comparison to bone marrow derived-MSCs (BM-MSCs) and dermal fibroblasts (DFs) in vitro. Topically delivered ASCs increased granulation tissue formation in wounds when compared to saline controls, whereas BM-MSCs or DFs did not. These studies suggest that ASCs and BM-MSCs are not identical, though they have similar surface markers. We found that topically delivered ASCs are engrafted and proliferate in the wounds. We showed that transplanted ASCs exhibited activated fibroblast phenotype, increased endothelial cell recruitment, and enhanced macrophage recruitment in vivo.

Concepts: Wound healing, Collagen, Extracellular matrix, Fibroblast, Stem cell, Mesenchymal stem cell, Bone marrow, Wound

170

Stem cell-based treatment for Huntington’s disease (HD) is an expanding field of research. Although various stem cells have been shown to be beneficial in vivo, no long standing clinical effect has been demonstrated. To address this issue, we are developing a stem cell-based therapy designed to improve the microenvironment of the diseased tissue via delivery of neurotrophic factors (NTFs). Previously, we established that bone marrow derived human mesenchymal stem cells (MSCs) can be differentiated using medium based cues into NTF-secreting cells (NTF+ cells) that express astrocytic markers. NTF+ cells were shown to alleviate neurodegeneration symptoms in several disease models in vitro and in vivo, including the model for excitotoxicity. In the present study, we explored if the timing of intrastriatal transplantation of hNTF+ cells into the R6/2 transgenic mouse model for HD influences motor function and survival. One hundred thousand cells were transplanted bilaterally into the striatum of immune-suppressed mice at 4.5, 5.5 and 6.5 weeks of age. Contrary to our expectations, early transplantation of NTF+ cells did not improve motor function or overall survival. However, late (6.5 weeks) transplantation resulted in a temporary improvement in motor function and an extension of life span relative to that observed for PBS treated mice. We conclude that late transplantation of NTF+ cells induces a beneficial effect in this transgenic model for HD. Since no transplanted NTF+ cells could be detected in vivo, we suspect that the temporary nature of the beneficial effect is due to poor survival of transplanted cells. In general, we submit that NTF+ cells should be further evaluated for the therapy of HD.

Concepts: Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells, Cellular differentiation, In vivo, Huntington's disease, Brain-derived neurotrophic factor

169

As an important factor affecting meat quality, intramuscular fat (IMF) content is a topic of worldwide concern. Emerging evidences indicate that microRNAs play important roles in adipocyte differentiation. However, miRNAome has neither been studied during porcine intramuscular preadipocyte differentiation, nor compared with subcutaneous preadipocytes. The objectives of this study were to identify porcine miRNAs involved in adipogenesis in primary preadipocytes, and to determine whether intramuscular and subcutaneous adipocytes differ in the expression and regulation of miRNAs.

Concepts: Gene expression, Mesenchymal stem cell, Cytoplasm, Cellular differentiation, Fat, Adipose tissue, Adipocyte

167

BACKGROUND: Adult stem cells have been widely investigated in bioengineering approaches for tissue repair therapy. We evaluated the clinical value and safety of the application of cultured bone marrow-derived allogenic mesenchymal stem cells (MSCs) for treating skin wounds in a canine model. HYPOTHESIS: Topical allogenic MSC transplantation can accelerate the closure of experimental full-thickness cutaneous wounds and attenuate local inflammation. ANIMALS: Adult healthy beagle dogs (n = 10; 3-6 years old; 7.2-13.1 kg) were studied. METHODS: Full-thickness skin wounds were created on the dorsum of healthy beagles, and allogenic MSCs were injected intradermally. The rate of wound closure and the degree of collagen production were analysed histologically using haematoxylin and eosin staining and trichrome staining. The degree of cellular proliferation and angiogenesis was evaluated by immunocytochemistry using proliferating cell nuclear antigen-, vimentin- and α-smooth muscle actin-specific antibodies. Local mRNA expression levels of interleukin-2, interferon-γ, basic fibroblast growth factor and matrix metalloproteinase-2 were evaluated by RT-PCR. RESULTS: Compared with the vehicle-treated wounds, MSC-treated wounds showed more rapid wound closure and increased collagen synthesis, cellular proliferation and angiogenesis. Moreover, MSC-treated wounds showed decreased expression of pro-inflammatory cytokines (interleukin-2 and interferon-γ) and wound healing-related factors (basic fibroblast growth factor and matrix metalloproteinase-2). CONCLUSION AND CLINICAL IMPORTANCE: Topical transplantation of MSCs results in paracrine effects on cellular proliferation and angiogenesis, as well as modulation of local mRNA expression of several factors related to cutaneous wound healing.

Concepts: Wound healing, Collagen, Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells, Cellular differentiation, Fibroblast growth factor

161

Human mesenchymal stem cells (hMSCs) remodel or regenerate various tissues through several mechanisms. Here, we identified the hMSC-secreted protein SCRG1 and its receptor BST1 as a positive regulator of self-renewal, migration, and osteogenic differentiation. SCRG1 and BST1 gene expression decreased during osteogenic differentiation of hMSCs. Intriguingly, SCRG1 maintained stem cell marker expression (Oct-4 and CD271/LNGFR) and the potentials of self-renewal, migration, and osteogenic differentiation, even at high passage numbers. Thus, the novel SCRG1/BST1 axis determines the fate of hMSCs by regulating their kinetic and differentiation potentials. Our findings provide a new perspective on methods for ex vivo expansion of hMSCs that maintain native stem cell potentials for bone-forming cell therapy.

Concepts: DNA, Gene, Gene expression, Cell, Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells

154

In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the loss of alveolar structure and airspace enlargement. To treat COPD, it is crucial to repair damaged lung tissue and regenerate the lost alveoli. Type II alveolar epithelial cells (AECII) play a vital role in maintaining lung tissue repair, and amniotic fluid-derived mesenchymal stromal cells (AFMSCs) possess the characteristics of regular mesenchymal stromal cells. However, it remains untested whether transplantation of rat AFMSCs (rAFMSCs) might alleviate lung injury caused by emphysema by increasing the expression of surfactant protein (SP)A and SPC and inhibiting AECII apoptosis.

Concepts: Cancer, Asthma, Lung, Pneumonia, Mesenchymal stem cell, Chronic obstructive pulmonary disease, Emphysema, Alpha 1-antitrypsin deficiency