SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mendelian inheritance

228

There are many situations where relatives interact while at the same time there is genetic polymorphism in traits influencing survival and reproduction. Examples include cheater-cooperator polymorphism and polymorphic microbial pathogens. Environmental heterogeneity, favoring different traits in nearby habitats, with dispersal between them, is one general reason to expect polymorphism. Currently, there is no formal framework of social evolution that encompasses genetic polymorphism. We develop such a framework, thus integrating theories of social evolution into the evolutionary ecology of heterogeneous environments. We allow for adaptively maintained genetic polymorphism by applying the concept of genetic cues. We analyze a model of social evolution in a two-habitat situation with limited dispersal between habitats, in which the average relatedness at the time of helping and other benefits of helping can differ between habitats. An important result from the analysis is that alleles at a polymorphic locus play the role of genetic cues, in the sense that the presence of a cue allele contains statistical information for an organism about its current environment, including information about relatedness. We show that epistatic modifiers of the cue polymorphism can evolve to make optimal use of the information in the genetic cue, in analogy with a Bayesian decision maker. Another important result is that the genetic linkage between a cue locus and modifier loci influences the evolutionary interest of modifiers, with tighter linkage leading to greater divergence between social traits induced by different cue alleles, and this can be understood in terms of genetic conflict.

Concepts: Gene, Genetics, Bacteria, Genotype, Allele, Evolution, Organism, Mendelian inheritance

83

Earwax type and axillary odor are genetically determined by rs17822931, a single-nucleotide polymorphism (SNP) located in the ABCC11 gene. The literature has been concerned with the Mendelian trait of earwax, although axillary odor is also Mendelian. Ethnic diversity in rs17822931 exists, with higher frequency of allele A in east Asians. Influence on deodorant usage has not been investigated. In this work, we present a detailed analysis of the rs17822931 effect on deodorant usage in a large (N∼17,000 individuals) population cohort (the Avon Longitudinal Study of Parents and Children (ALSPAC)). We found strong evidence (P=3.7 × 10(-20)) indicating differential deodorant usage according to the rs17822931 genotype. AA homozygotes were almost 5-fold overrepresented in categories of never using deodorant or using it infrequently. However, 77.8% of white European genotypically nonodorous individuals still used deodorant, and 4.7% genotypically odorous individuals did not. We provide evidence of a behavioral effect associated with rs17822931. This effect has a biological basis that can result in a change in the family’s environment if an aerosol deodorant is used. It also indicates potential cost saving to the nonodorous and scope for personalized genetics usage in personal hygiene choices, with consequent reduction of inappropriate chemical exposures for some.Journal of Investigative Dermatology advance online publication, 17 January 2013; doi:10.1038/jid.2012.480.

Concepts: DNA, Gene, Genetics, Genotype, Allele, Evolution, Biology, Mendelian inheritance

50

The effects of inbreeding on human health depend critically on the number and severity of recessive, deleterious mutations carried by individuals. In humans, existing estimates of these quantities are based on comparisons between consanguineous and nonconsanguineous couples, an approach that confounds socioeconomic and genetic effects of inbreeding. To overcome this limitation, we focused on a founder population that practices a communal lifestyle, for which there is almost complete Mendelian disease ascertainment and a known pedigree. Focusing on recessive lethal diseases and simulating allele transmissions, we estimated that each haploid set of human autosomes carries on average 0.29 (95% credible interval [0.10, 0.84]) recessive alleles that lead to complete sterility or death by reproductive age when homozygous. Comparison to existing estimates in humans suggests that a substantial fraction of the total burden imposed by recessive deleterious variants is due to single mutations that lead to sterility or death between birth and reproductive age. In turn, comparison to estimates from other eukaryotes points to a surprising constancy of the average number of recessive lethal mutations across organisms with markedly different genome sizes.

Concepts: Gene, Genetics, Human, Allele, Evolution, Organism, Mendelian inheritance, Autosome

33

Idiopathic scoliosis (IS) is a spine deformity that affects approximately 3% of the population. The underlying causes of IS are not well understood, although there is clear evidence that there is a genetic component to the disease. Genetic mapping studies suggest high genetic heterogeneity, but no IS disease-causing gene has yet been identified. Here, genetic linkage analyses combined with exome sequencing identified a rare missense variant (p.A446T) in the centriolar protein gene POC5 that cosegregated with the disease in a large family with multiple members affected with IS. Subsequently, the p.A446T variant was found in an additional set of families with IS and in an additional 3 cases of IS. Moreover, POC5 variant p.A455P was present and linked to IS in one family and another rare POC5 variant (p.A429V) was identified in an additional 5 cases of IS. In a zebrafish model, expression of any of the 3 human IS-associated POC5 variant mRNAs resulted in spine deformity, without affecting other skeletal structures. Together, these findings indicate that mutations in the POC5 gene contribute to the occurrence of IS.

Concepts: Family, DNA, Gene, Affect, Genetic linkage, William Bateson, Thomas Hunt Morgan, Mendelian inheritance

29

To detect fully penetrant rare recessive variants that could constitute Mendelian subentities of complex diseases, we propose a novel strategy, the HBD-GWAS strategy, which can be applied to genome-wide association study (GWAS) data. This strategy first involves the identification of inbred individuals among cases using the genome-wide SNP data and then focuses on these inbred affected individuals and searches for genomic regions of shared homozygosity by descent that could harbor rare recessive disease-causing variants. In this second step, analogous to homozygosity mapping, a heterogeneity lod-score, HFLOD, is computed to quantify the evidence of linkage provided by the data. In this paper, we evaluate this strategy theoretically under different scenarios and compare its performances with those of linkage analysis using affected sib-pair (ASP) data. If cases affected by these Mendelian subentities are not enriched in the sample of cases, the HBD-GWAS strategy has almost no power to detect them, unless they explain an important part of the disease prevalence. The HBD-GWAS strategy outperforms the ASP linkage strategy only in a very limited number of situations where there exists a strong allelic heterogeneity. When several rare recessive variants within the same gene are involved, the ASP design indeed often fails to detect the gene, whereas, by focusing on inbred individuals using the HBD-GWAS strategy, the gene might be detected provided very large samples of cases are available.

Concepts: Gene, Genetics, Disease, Allele, Classical genetics, Genome-wide association study, Genetic linkage, Mendelian inheritance

27

-Whole exome sequencing (WES) is a powerful technique for Mendelian disease gene discovery. However, variant prioritization remains a challenge. We applied WES to identify the causal variant in a large family with familial dilated cardiomyopathy (DMC) of unknown etiology.

Concepts: Family, Genetics, Evolution, Household, Mendelian inheritance, Nuclear family, Dilated cardiomyopathy

24

PurposeWhole-exome and whole-genome sequencing have transformed the discovery of genetic variants that cause human Mendelian disease, but discriminating pathogenic from benign variants remains a daunting challenge. Rarity is recognized as a necessary, although not sufficient, criterion for pathogenicity, but frequency cutoffs used in Mendelian analysis are often arbitrary and overly lenient. Recent very large reference datasets, such as the Exome Aggregation Consortium (ExAC), provide an unprecedented opportunity to obtain robust frequency estimates even for very rare variants.MethodsWe present a statistical framework for the frequency-based filtering of candidate disease-causing variants, accounting for disease prevalence, genetic and allelic heterogeneity, inheritance mode, penetrance, and sampling variance in reference datasets.ResultsUsing the example of cardiomyopathy, we show that our approach reduces by two-thirds the number of candidate variants under consideration in the average exome, without removing true pathogenic variants (false-positive rate<0.001).ConclusionWe outline a statistically robust framework for assessing whether a variant is "too common" to be causative for a Mendelian disorder of interest. We present precomputed allele frequency cutoffs for all variants in the ExAC dataset.GENETICS in MEDICINE advance online publication, 18 May 2017; doi:10.1038/gim.2017.26.

Concepts: Gene, Genetics, Epidemiology, Disease, Genetic disorder, Allele, Evolution, Mendelian inheritance

22

The genetic determination of eggshell coloration has not been determined in birds. Here we report that the blue eggshell is caused by an EAV-HP insertion that promotes the expression of SLCO1B3 gene in the uterus (shell gland) of the oviduct in chicken. In this study, the genetic map location of the blue eggshell gene was refined by linkage analysis in an F(2) chicken population, and four candidate genes within the refined interval were subsequently tested for their expression levels in the shell gland of the uterus from blue-shelled and non-blue-shelled hens. SLCO1B3 gene was found to be the only one expressed in the uterus of blue-shelled hens but not in that of non-blue-shelled hens. Results from a pyrosequencing analysis showed that only the allele of SLCO1B3 from blue-shelled chickens was expressed in the uterus of heterozygous hens (O*LC/O*N). SLCO1B3 gene belongs to the organic anion transporting polypeptide (OATP) family; and the OATPs, functioning as membrane transporters, have been reported for the transportation of amphipathic organic compounds, including bile salt in mammals. We subsequently resequenced the whole genomic region of SLCO1B3 and discovered an EAV-HP insertion in the 5' flanking region of SLCO1B3. The EAV-HP insertion was found closely associated with blue eggshell phenotype following complete Mendelian segregation. In situ hybridization also demonstrated that the blue eggshell is associated with ectopic expression of SLCO1B3 in shell glands of uterus. Our finding strongly suggests that the EAV-HP insertion is the causative mutation for the blue eggshell phenotype. The insertion was also found in another Chinese blue-shelled breed and an American blue-shelled breed. In addition, we found that the insertion site in the blue-shelled chickens from Araucana is different from that in Chinese breeds, which implied independent integration events in the blue-shelled chickens from the two continents, providing a parallel evolutionary example at the molecular level.

Concepts: Gene, Genetics, Gene expression, Evolution, Genome, Genetic linkage, Chicken, Mendelian inheritance

15

Genetic association studies often examine features independently, potentially missing subpopulations with multiple phenotypes that share a single cause. We describe an approach that aggregates phenotypes on the basis of patterns described by Mendelian diseases. We mapped the clinical features of 1204 Mendelian diseases into phenotypes captured from the electronic health record (EHR) and summarized this evidence as phenotype risk scores (PheRSs). In an initial validation, PheRS distinguished cases and controls of five Mendelian diseases. Applying PheRS to 21,701 genotyped individuals uncovered 18 associations between rare variants and phenotypes consistent with Mendelian diseases. In 16 patients, the rare genetic variants were associated with severe outcomes such as organ transplants. PheRS can augment rare-variant interpretation and may identify subsets of patients with distinct genetic causes for common diseases.

Concepts: Gene, Disease, Evolution, Classical genetics, Genetic linkage, Electronic health record, Genetic association, Mendelian inheritance

14

Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel’s law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Further tracing of causal variants revealed background-specific expressivity and modified inheritances, gradually transitioning from Mendelian to complex traits in 30% of the cases. In fact, when taking into account the natural population diversity, the hidden complexity of traits could be substantial, perplexing the phenotypic predictability even for simple Mendelian traits.

Concepts: Genetics, Natural selection, Evolution, Fungus, Saccharomyces cerevisiae, Saccharomyces pastorianus, Brewing, Mendelian inheritance