SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Memetics

310

How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.

Concepts: Scientific method, Prediction, Futurology, Future, Sociology, Forecasting, Memetics, Meme

2

Previous studies showed that the meme popularity distribution is described by a heavy-tailed distribution or a power-law, which is a characteristic feature of the criticality. Here, we study the origin of the criticality on non-growing and growing networks based on the competition induced criticality model. From the direct Mote Carlo simulations and the exact mapping into the position dependent biased random walk (PDBRW), we find that the meme popularity distribution satisfies a very robust power- law with exponent α = 3/2 if there is an innovation process. On the other hand, if there is no innovation, then we find that the meme popularity distribution is bounded and highly skewed for early transient time periods, while it satisfies a power-law with exponent α ≠ 3/2 for intermediate time periods. The exact mapping into PDBRW clearly shows that the balance between the creation of new memes by the innovation process and the extinction of old memes is the key factor for the criticality. We confirm that the balance for the criticality sustains for relatively small innovation rate. Therefore, the innovation processes with significantly influential memes should be the simple and fundamental processes which cause the critical distribution of the meme popularity in real social networks.

Concepts: Critical thinking, Economics, Probability theory, Complex number, Innovation, Memetics, Meme, Susan Blackmore

2

Every day we are exposed to different ideas, or memes, competing with each other for our attention. Previous research explained popularity and persistence heterogeneity of memes by assuming them in competition for limited attention resources, distributed in a heterogeneous social network. Little has been said about what characteristics make a specific meme more likely to be successful. We propose a similarity-based explanation: memes with higher similarity to other memes have a significant disadvantage in their potential popularity. We employ a meme similarity measure based on semantic text analysis and computer vision to prove that a meme is more likely to be successful and to thrive if its characteristics make it unique. Our results show that indeed successful memes are located in the periphery of the meme similarity space and that our similarity measure is a promising predictor of a meme success.

Concepts: Natural selection, Critical thinking, Sociology, Memetics, Susan Blackmore