Discover the most talked about and latest scientific content & concepts.

Concept: Melanism


From the outset multiple causes have been suggested for changes in melanic gene frequency in the peppered moth Biston betularia and other industrial melanic moths. These have included higher intrinsic fitness of melanic forms and selective predation for camouflage. The possible existence and origin of heterozygote advantage has been debated. From the 1950s, as a result of experimental evidence, selective predation became the favoured explanation and is undoubtedly the major factor driving the frequency change. However, modelling and monitoring of declining melanic frequencies since the 1970s indicate either that migration rates are much higher than existing direct estimates suggested or else, or in addition, non-visual selection has a role. Recent molecular work on genetics has revealed that the melanic (carbonaria) allele had a single origin in Britain, and that the locus is orthologous to a major wing patterning locus in Heliconius butterflies. New methods of analysis should supply further information on the melanic system and on migration that will complete our understanding of this important example of rapid evolution.Heredity advance online publication, 5 December 2012; doi:10.1038/hdy.2012.92.

Concepts: Gene, Genetics, Natural selection, Evolution, Peppered moth, Peppered moth evolution, Moth, Melanism


Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of ‘jumping genes’ as a source of major phenotypic novelty.

Concepts: Mutation, Natural selection, Evolution, RNA, Peppered moth, Peppered moth evolution, Moth, Melanism


Although classically associated with urban environments in invertebrates, melanism in terrestrial snakes is more often linked to occupancy of cool climates [1-3]. Thermal advantages to melanism do not apply in aquatic snakes [4], but although turtle-headed seasnakes (Emydocephalus annulatus) are banded or blotched across a wide geographic range [5], most individuals are melanic in polluted inshore bays of the Pacific island of New Caledonia [4]. Why has melanism evolved in these urban sites? Because trace elements bind to melanin, darker feathers enhance a bird’s ability to shed pollutants [6]. Reptiles in polluted habitats also accumulate trace elements, which are expelled when the skin is sloughed [7-11]. Might melanism enable snakes to rid themselves of harmful pollutants? We measured trace elements in sloughed skins of seasnakes from urban-industrial versus other areas and in dark versus light skin. For the latter comparison, we used data from laticaudine seasnakes (sea kraits Laticauda spp.), in which each individual is dark and light banded, facilitating comparisons between dark and light skin. As predicted, concentrations of trace elements were higher in snakes from urban-industrial areas and higher in darker than paler skin (even within the same slough). The rate of excretion of trace elements is further enhanced by higher frequencies of sloughing in melanic than banded individuals, even within the same population, because of higher rates of algal settlement on darker skin. Thus, melanism of seasnakes in polluted sites may facilitate excretion of trace elements via sloughing. VIDEO ABSTRACT.

Concepts: Skin, Melanin, Peppered moth evolution, Melanism, Albinism, Snake, Elapidae, Leucism


Analysis of melanosome biogenesis in the retinal pigment epithelium (RPE) is challenging because it occurs predominantly in a short embryonic time window. Here we show that the zebrafish provides an ideal model system for studying this process because in the RPE the timing of melanosome biogenesis facilitates molecular manipulation using morpholinos. Morpholino-mediated knockdown of OA1, mutations in which cause the most common form of human ocular albinism, induces a major reduction in melanosome number, recapitulating a key feature of the mammalian disease where reduced melanosome numbers precede macromelanosome formation. We further show that PMEL, a key component of mammalian melanosome biogenesis, is required for generation of cylindrical melanosomes in zebrafish, in turn required for melanosome movement into the apical processes and maintenance of photoreceptor integrity. Spherical and cylindrical melanosomes containing similar melanin volumes co-exist in the cell body but only cylindrical melanosomes enter the apical processes. Taken together our findings indicate that melanosome number and shape are independently regulated and that melanosome shape controls a function in the RPE that depends on localization in the apical processes.

Concepts: Retina, Melanin, Retinal pigment epithelium, Melanism, Albinism, Melanocyte, Melanosome, Ocular albinism


Albinism is caused by a series of genetic abnormalities leading to reduction of melanin production. Albinism is quite frequent in catfish, but the causative gene and the molecular basis were unknown. In this study, we conducted a genome-wide association study (GWAS) using the 250 K SNP array. The GWAS analysis allowed mapping of the albino phenotype in the Hermansky-Pudlak syndrome 4 (Hps4) gene, which is known to be involved in melanosome biosynthesis. Sequencing analysis revealed that a 99-bp deletion was present in all analyzed albino catfish at the intron 2 and exon 3 junction. This deletion led to the skipping of the entire exon 3 which was confirmed by RT-PCR. Therefore, Hps4 was determined to be the candidate gene of the catfish albinism.

Concepts: DNA, Genetics, Allele, Molecular biology, Genome-wide association study, Melanin, Melanism, Albinism


Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. In this study we recruited 321 albino patients and screened them for the genes known to cause oculocutaneous albinism (OCA1-4 and OCA6) and ocular albinism (OA1). Our purpose was to detect mutations and genetic frequencies of the main causative genes, offering to albino patients an exhaustive diagnostic assessment within a multidisciplinary approach including ophthalmological, dermatological, audiological and genetic evaluations. We report 70 novel mutations and the frequencies of the major causative OCA genes that are as follows: TYR (44%), OCA2 (17%), TYRP1 (1%), SLC45A2 (7%) and SLC24A5 (<0.5%). An additional 5% of patients had GPR143 mutations. In 19% of cases, a second reliable mutation was not detected, whereas 7% of our patients remain still molecularly undiagnosed. This comprehensive study of a consecutive series of OCA/OA1 patients allowed us to perform a clinical evaluation of the different OCA forms.Journal of Human Genetics advance online publication, 13 October 2016; doi:10.1038/jhg.2016.123.

Concepts: Genetics, Allele, Melanin, Human skin color, Melanism, Albinism, Oculocutaneous albinism, Ocular albinism