SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Melanesia

228

The land planarian Platydemus manokwari de Beauchamp, 1963 or “New Guinea flatworm” is a highly invasive species, mainly in the Pacific area, and recently in Europe (France). We report specimens from six additional countries and territories: New Caledonia (including mainland and two of the Loyalty Islands, Lifou and Maré), Wallis and Futuna Islands, Singapore, Solomon Islands, Puerto Rico, and Florida, USA. We analysed the COI gene (barcoding) in these specimens with two sets of primers and obtained 909 bp long sequences. In addition, specimens collected in Townsville (Australia) were also sequenced. Two haplotypes of the COI sequence, differing by 3.7%, were detected: the “World haplotype” found in France, New Caledonia, French Polynesia, Singapore, Florida and Puerto Rico; and the “Australian haplotype” found in Australia. The only locality with both haplotypes was in the Solomon Islands. The country of origin of Platydemus manokwari is New Guinea, and Australia and the Solomon Islands are the countries closest to New Guinea from which we had specimens. These results suggest that two haplotypes exist in the area of origin of the species, but that only one of the two haplotypes (the “World haplotype”) has, through human agency, been widely dispersed. However, since P. manokwari is now recorded from 22 countries in the world and we have genetic information from only 8 of these, with none from New Guinea, this analysis provides only partial knowledge of the genetic structure of the invasive species. Morphological analysis of specimens from both haplotypes has shown some differences in ratio of the genital structures but did not allow us to interpret the haplotypes as different species. The new reports from Florida and Puerto Rico are firsts for the USA, for the American continent, and the Caribbean. P. manokwari is a known threat for endemic terrestrial molluscs and its presence is a matter of concern. While most of the infected territories reported until now were islands, the newly reported presence of the species in mainland US in Florida should be considered a potential major threat to the whole US and even the Americas.

Concepts: French language, Polynesia, Melanesia, Pacific Ocean, New Caledonia, Wallis and Futuna, Australia, Oceania

170

Among Oceania’s population of 35 million people, the greatest number living in poverty currently live in Papua New Guinea (PNG), Fiji, Vanuatu, and the Solomon Islands. These impoverished populations are at high risk for selected NTDs, including Necator americanus hookworm infection, strongyloidiasis, lymphatic filariasis (LF), balantidiasis, yaws, trachoma, leprosy, and scabies, in addition to outbreaks of dengue and other arboviral infections including Japanese encephalitis virus infection. PNG stands out for having the largest number of cases and highest prevalence for most of these NTDs. However, Australia’s Aboriginal population also suffers from a range of significant NTDs. Through the Pacific Programme to Eliminate Lymphatic Filariasis, enormous strides have been made in eliminating LF in Oceania through programs of mass drug administration (MDA), although LF remains widespread in PNG. There are opportunities to scale up MDA for PNG’s major NTDs, which could be accomplished through an integrated package that combines albendazole, ivermectin, diethylcarbamazine, and azithromycin, in a program of national control. Australia’s Aboriginal population may benefit from appropriately integrated MDA into primary health care systems. Several emerging viral NTDs remain important threats to the region.

Concepts: Tropical diseases, Oceania, Hookworm, Solomon Islands, Melanesia, Australia, Papua New Guinea, Neglected diseases

25

How and when dingoes arrived in Oceania poses a fascinating question for scientists with interest in the historical movements of humans and dogs. The dingo holds a unique position as top terrestrial predator of Australia and exists in a wild state. In the first geographical survey of genetic diversity in the dingo using whole mitochondrial genomes, we analysed 16,428 bp in 25 individuals from five separate populations. We also investigated 13 nuclear loci to compare with the mitochondrial population history patterns. Phylogenetic analyses based upon mitochondrial DNA and nuclear DNA support the hypothesis that there are at least two distinct populations of dingo, one of which occurs in the northwest and the other in the southeast of the continent. Conservative molecular dating based upon mitochondrial DNA suggest that the lineages split approximately 8300 years before present, likely outside Australia but within Oceania. The close relationship between dingoes and New Guinea Singing Dogs suggests that plausibly dingoes spread into Australia via the land bridge between Papua New Guinea and Australia although seafaring introductions cannot be rejected. The geographical distribution of these divergent lineages suggests there were multiple independent dingo immigrations. Importantly, the observation of multiple dingo populations suggests the need for revision of existing conservation and management programs that treat dingoes as a single homogeneous population.

Concepts: Indonesia, Melanesia, New Guinea, Southeast Asia, Oceania, DNA, Papua New Guinea, Australia

21

An epidemic of Ross River Virus (RRV) occurred in the South Pacific in 1979-1980, but it was not believed to occur endemically outside Australia and Papua New Guinea. We conducted a seroprevalence study to determine whether RRV has circulated in American Samoa after 1980.

Concepts: Solomon Islands, Melanesia, New Guinea, Southeast Asia, Papua New Guinea, Australia, Oceania, Pacific Ocean

20

The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100-2,700 years before present) and one from Tonga (about 2,700-2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.

Concepts: New Guinea, Pacific Ocean, Papua New Guinea, Melanesia, Asia, New Caledonia, Oceania, Polynesia

14

HTLV-1 infection is endemic among people of Melanesian descent in Papua New Guinea, the Solomon Islands and Vanuatu. Molecular studies reveal that these Melanesian strains belong to the highly divergent HTLV-1c subtype. In Australia, HTLV-1 is also endemic among the Indigenous people of central Australia; however, the molecular epidemiology of HTLV-1 infection in this population remains poorly documented.

Concepts: Elizabeth II of the United Kingdom, Pacific Ocean, Human T-lymphotropic virus, Oceania, Melanesia, Solomon Islands, Papua New Guinea, Australia

9

Naturally blond hair is rare in humans and found almost exclusively in Europe and Oceania. Here, we identify an arginine-to-cysteine change at a highly conserved residue in tyrosinase-related protein 1 (TYRP1) as a major determinant of blond hair in Solomon Islanders. This missense mutation is predicted to affect catalytic activity of TYRP1 and causes blond hair through a recessive mode of inheritance. The mutation is at a frequency of 26% in the Solomon Islands, is absent outside of Oceania, represents a strong common genetic effect on a complex human phenotype, and highlights the importance of examining genetic associations worldwide.

Concepts: Mutation, Oceania, Protein, Polynesia, Melanesia, Papua New Guinea, Australia, Solomon Islands

6

Ancient DNA from Vanuatu and Tonga dating to about 2,900-2,600 years ago (before present, BP) has revealed that the “First Remote Oceanians” associated with the Lapita archaeological culture were directly descended from the population that, beginning around 5000 BP, spread Austronesian languages from Taiwan to the Philippines, western Melanesia, and eventually Remote Oceania. Thus, ancestors of the First Remote Oceanians must have passed by the Papuan-ancestry populations they encountered in New Guinea, the Bismarck Archipelago, and the Solomon Islands with minimal admixture [1]. However, all present-day populations in Near and Remote Oceania harbor >25% Papuan ancestry, implying that additional eastward migration must have occurred. We generated genome-wide data for 14 ancient individuals from Efate and Epi Islands in Vanuatu from 2900-150 BP, as well as 185 present-day individuals from 18 islands. We find that people of almost entirely Papuan ancestry arrived in Vanuatu by around 2300 BP, most likely reflecting migrations a few hundred years earlier at the end of the Lapita period, when there is also evidence of changes in skeletal morphology and cessation of long-distance trade between Near and Remote Oceania [2, 3]. Papuan ancestry was subsequently diluted through admixture but remains at least 80%-90% in most islands. Through a fine-grained analysis of ancestry profiles, we show that the Papuan ancestry in Vanuatu derives from the Bismarck Archipelago rather than the geographically closer Solomon Islands. However, the Papuan ancestry in Polynesia-the most remote Pacific islands-derives from different sources, documenting a third stream of migration from Near to Remote Oceania.

Concepts: Pacific Ocean, Papua New Guinea, Solomon Islands, Vanuatu, Oceania, Australia, Polynesia, Melanesia

5

We report the unprecedented Lapita exploitation and subsequent extinction of large megafauna tortoises (?Meiolania damelipi) on tropical islands during the late Holocene over a 281,000 km(2) region of the southwest Pacific spanning from the Vanuatu archipelago to Viti Levu in Fiji. Zooarchaeological analyses have identified seven early archaeological sites with the remains of this distinctive hornless tortoise, unlike the Gondwanan horned meiolaniid radiation to the southwest. These large tortoise radiations in the Pacific may have contributed to the rapid dispersal of early mobile Neolithic hunters throughout southwest Melanesia and on to western Polynesia. Subsequent rapid extinctions of these terrestrial herbivorous megafauna are likely to have led to significant changes in ecosystems that help explain changes in current archaeological patterns from Post-Lapita contexts in the region.

Concepts: Pacific Ocean, New Caledonia, Vanuatu, Solomon Islands, Australia, Polynesia, Melanesia, Fiji

5

This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the conservation strategy for the ex-situ Pacific Banana Collection supported collectively by the Pacific countries.

Concepts: French Polynesia, Genetics, Polynesia, Banana, Pacific Ocean, DNA, Melanesia, Oceania