SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mediterranean climate

225

Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

Concepts: Biodiversity, Climate, Vitis vinifera, Wine, Mediterranean climate, Grape, Viticulture

84

The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies.

Concepts: Climate, Weather, Ecosystem, Climate change, Sustainability, Mediterranean climate, Lebanon, Holocene

80

It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today’s technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.

Concepts: United States, Climate, Economics, Climate change, Mediterranean climate, Climate model, Global climate model, Electricity distribution

63

The Mediterranean olive tree (Olea europaea subsp. europaea) was one of the first trees to be domesticated and is currently of major agricultural importance in the Mediterranean region as the source of olive oil. The molecular bases underlying the phenotypic differences among domesticated cultivars, or between domesticated olive trees and their wild relatives, remain poorly understood. Both wild and cultivated olive trees have 46 chromosomes (2n).

Concepts: Fruit, Olive, Mediterranean climate, Olive oil, Greece, Mediterranean Basin, Olive leaf, Oleaceae

28

SUMMARY Following the recent description of microfilariae of a Cercopithifilaria sp. in a dog from Sicily, Italy, (herein after referred to as Cercopithifilaria sp. I), numerous skin samples were collected from dogs in the Mediterranean region. In addition to Cercopithifilaria sp. I (185·7 ± 7·2 μm long), microfilariae of 2 other species were identified, namely Cercopithifilaria grassii (651·7 ± 23·6 μm long) and a yet undescribed microfilaria, Cercopithifilaria sp. II (264·4 ± 20·2 μm long, with evident lateral alae). The morphological differentiation among the 3 species of dermal microfilariae was confirmed by differences in cytochrome c oxidase subunit 1 and ribosomal 12S sequences examined (mean level of interspecific pairwise distance of 11·4%, and 17·7%, respectively). Phylogenetic analyses were concordant in clustering these with other sequences of Cercopithifilaria spp. to the exclusion of Dirofilaria spp., Onchocerca spp. and Acanthocheilonema spp. Dermal microfilariae collected (n = 132) were morphologically identified as Cercopithifilaria sp. I (n = 108, 81·8%), Cercopithifilaria sp. II (n = 17, 12·9%), whereas only 7 (5·3%) were identified as C. grassii. Mixed infestations were detected in all sites examined. The great diversity of these neglected filarioids in dogs is of biological interest, considering the complex interactions occurring among hosts, ticks and Cercopithifilaria spp. in different environments.

Concepts: Species, Mediterranean Sea, Turkey, Dog, Mediterranean climate, Cytochrome c, Mediterranean Basin, History of the Mediterranean region

27

The main characteristics of the heat accumulation period and the possible existence of different types of biological response to the environment in different populations of olive through the Mediterranean region have been evaluated. Chilling curves to determine the start date of the heat accumulation period were constructed and evaluated. The results allow us to conclude that the northern olive populations have the greatest heat requirements for the development of their floral buds, and they need a period of time longer than olives in others areas to completely satisfy their biothermic requirements. The olive trees located in the warmest winter areas have a faster transition from endogenous to exogenous inhibition once the peak of chilling is met, and they show more rapid floral development. The lower heat requirements are due to better adaptation to warmer regions. Both the threshold temperature and the peak of flowering date are closely related to latitude. Different types of biological responses of olives to the environment were found. The adaptive capacity shown by the olive tree should be considered as a useful tool with which to study the effects of global climatic change on agro-ecosystems.

Concepts: Climate, Climate change, Fruit, Olive, Mediterranean climate, Olive oil, Mediterranean Basin

26

Although a role of glycemic index (GI) and glycemic load (GL) in age-related cataract development is plausible, a few studies, all conducted in USA or Australia, provided results on this issue. The aim of the present study was to provide new original data from a Mediterranean population.

Concepts: Nutrition, Cultural studies, Carbohydrate, Glycemic index, Diabetic diet, Mediterranean climate, Glycemic load, Insulin index

25

The objective was to evaluate physical and chemical properties of eight pomegranate accessions (seven cultivars and one wild genotype) collected from the Mediterranean region of Croatia. Accessions showed high variability in fruit weight and size, calyx and peel properties, number of arils per fruit, total aril weight, and aril and juice yield. Variables that define sweet taste, such as low total acidity (TA; 0.37-0.59%), high total soluble solids content (TSS; 12.5-15.0%) and their ratio (TSS/TA) were evaluated, and results generally aligned with sweetness classifications of the fruit. Pomegranate fruit had a high variability in total phenolic content (1985.6-2948.7 mg/L). HPLC-MALDI-TOF/MS analysis showed that accessions with dark red arils had the highest total anthocyanin content, with cyanidin 3-glucoside as the most abundant compound. Principal component analysis revealed great differences in fruit physical characteristics and chemical composition among pomegranate accessions.

Concepts: Citrus, Principal component analysis, Fruit, Olive, Mediterranean climate, Pomegranate, Aril, Sweetness

19

Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation-costs and distribution, participation, and enforcement-affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.

Concepts: Effect, United States, Effectiveness, United Kingdom, English language, Mediterranean climate, Oceanic climate, Society

17

The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.

Concepts: Conservation biology, Habitat, Climate, Weather, Greek loanwords, Ecosystem, Climate change, Mediterranean climate