SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Medicine

440

Background Long-term results from randomized, controlled trials that compare medical therapy with surgical therapy in patients with type 2 diabetes are limited. Methods We assessed outcomes 5 years after 150 patients who had type 2 diabetes and a body-mass index (BMI; the weight in kilograms divided by the square of the height in meters) of 27 to 43 were randomly assigned to receive intensive medical therapy alone or intensive medical therapy plus Roux-en-Y gastric bypass or sleeve gastrectomy. The primary outcome was a glycated hemoglobin level of 6.0% or less with or without the use of diabetes medications. Results Of the 150 patients who underwent randomization, 1 patient died during the 5-year follow-up period; 134 of the remaining 149 patients (90%) completed 5 years of follow-up. At baseline, the mean (±SD) age of the 134 patients was 49±8 years, 66% were women, the mean glycated hemoglobin level was 9.2±1.5%, and the mean BMI was 37±3.5. At 5 years, the criterion for the primary end point was met by 2 of 38 patients (5%) who received medical therapy alone, as compared with 14 of 49 patients (29%) who underwent gastric bypass (unadjusted P=0.01, adjusted P=0.03, P=0.08 in the intention-to-treat analysis) and 11 of 47 patients (23%) who underwent sleeve gastrectomy (unadjusted P=0.03, adjusted P=0.07, P=0.17 in the intention-to-treat analysis). Patients who underwent surgical procedures had a greater mean percentage reduction from baseline in glycated hemoglobin level than did patients who received medical therapy alone (2.1% vs. 0.3%, P=0.003). At 5 years, changes from baseline observed in the gastric-bypass and sleeve-gastrectomy groups were superior to the changes seen in the medical-therapy group with respect to body weight (-23%, -19%, and -5% in the gastric-bypass, sleeve-gastrectomy, and medical-therapy groups, respectively), triglyceride level (-40%, -29%, and -8%), high-density lipoprotein cholesterol level (32%, 30%, and 7%), use of insulin (-35%, -34%, and -13%), and quality-of-life measures (general health score increases of 17, 16, and 0.3; scores on the RAND 36-Item Health Survey ranged from 0 to 100, with higher scores indicating better health) (P<0.05 for all comparisons). No major late surgical complications were reported except for one reoperation. Conclusions Five-year outcome data showed that, among patients with type 2 diabetes and a BMI of 27 to 43, bariatric surgery plus intensive medical therapy was more effective than intensive medical therapy alone in decreasing, or in some cases resolving, hyperglycemia. (Funded by Ethicon Endo-Surgery and others; STAMPEDE ClinicalTrials.gov number, NCT00432809 .).

Concepts: Medicine, Diabetes mellitus, Obesity, Surgery, Body mass index, Bariatric surgery, Gastric bypass surgery, Bariatrics

437

Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their “biological aging” (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.

Concepts: Medicine, Death, Senescence, Biology, Population, Gerontology, Ageing, Aging

432

To conduct a systematic review and meta-analysis of prices of healthier versus less healthy foods/diet patterns while accounting for key sources of heterogeneity.

Concepts: Medicine, Health, Epidemiology, Human, Nutrition, Weight loss

416

We want to clarify, given recent concern about our policy, that the Journal is committed to data sharing in the setting of clinical trials. As stated in the Institute of Medicine report from the committee(1) on which I served and the recent editorial by the International Committee of Medical Journal Editors (ICMJE),(2) we believe there is a moral obligation to the people who volunteer to participate in these trials to ensure that their data are widely and responsibly used. Journal policy will therefore follow that outlined in the ICMJE editorial and the IOM report: when appropriate systems are in place, . . .

Concepts: Medicine, Avicenna, ClinicalTrials.gov

408

The usefulness of aspirin to defend against cardiovascular disease in both primary and secondary settings is well recognized by the medical profession. Multiple studies also have found that daily aspirin significantly reduces cancer incidence and mortality. Despite these proven health benefits, aspirin use remains low among populations targeted by cardiovascular prevention guidelines. This article seeks to determine the long-term economic and population-health impact of broader use of aspirin by older Americans at higher risk for cardiovascular disease.

Concepts: Medicine, Epidemiology, Disease, Death, Demography, United States, Economics, Aspirin

399

A new wave of portable biosensors allows frequent measurement of health-related physiology. We investigated the use of these devices to monitor human physiological changes during various activities and their role in managing health and diagnosing and analyzing disease. By recording over 250,000 daily measurements for up to 43 individuals, we found personalized circadian differences in physiological parameters, replicating previous physiological findings. Interestingly, we found striking changes in particular environments, such as airline flights (decreased peripheral capillary oxygen saturation [SpO2] and increased radiation exposure). These events are associated with physiological macro-phenotypes such as fatigue, providing a strong association between reduced pressure/oxygen and fatigue on high-altitude flights. Importantly, we combined biosensor information with frequent medical measurements and made two important observations: First, wearable devices were useful in identification of early signs of Lyme disease and inflammatory responses; we used this information to develop a personalized, activity-based normalization framework to identify abnormal physiological signals from longitudinal data for facile disease detection. Second, wearables distinguish physiological differences between insulin-sensitive and -resistant individuals. Overall, these results indicate that portable biosensors provide useful information for monitoring personal activities and physiology and are likely to play an important role in managing health and enabling affordable health care access to groups traditionally limited by socioeconomic class or remote geography.

Concepts: Health care, Medicine, Epidemiology, Cancer, Physiology, Sociology, Arthritis, Ibn al-Nafis

393

A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R(2) between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.

Concepts: Medicine, Model organism, Animal testing, Drug discovery, Model, Medical research, Orphan drug

373

 To assess the impact of communicating DNA based disease risk estimates on risk-reducing health behaviours and motivation to engage in such behaviours.

Concepts: Medicine, Genetics, Epidemiology, Risk, Educational psychology, Behavior, Motivation, Human behavior

369

Changes in the human gastrointestinal microbiome are associated with several diseases. To infer causality, experiments in representative models are essential, but widely used animal models exhibit limitations. Here we present a modular, microfluidics-based model (HuMiX, human-microbial crosstalk), which allows co-culture of human and microbial cells under conditions representative of the gastrointestinal human-microbe interface. We demonstrate the ability of HuMiX to recapitulate in vivo transcriptional, metabolic and immunological responses in human intestinal epithelial cells following their co-culture with the commensal Lactobacillus rhamnosus GG (LGG) grown under anaerobic conditions. In addition, we show that the co-culture of human epithelial cells with the obligate anaerobe Bacteroides caccae and LGG results in a transcriptional response, which is distinct from that of a co-culture solely comprising LGG. HuMiX facilitates investigations of host-microbe molecular interactions and provides insights into a range of fundamental research questions linking the gastrointestinal microbiome to human health and disease.

Concepts: Medicine, Archaea, Epidemiology, Disease, Bacteria, Microbiology, Epithelium, Lactobacillus rhamnosus

368

The ‘Blood-Type’ diet advises individuals to eat according to their ABO blood group to improve their health and decrease risk of chronic diseases such as cardiovascular disease. However, the association between blood type-based dietary patterns and health outcomes has not been examined. The objective of this study was to determine the association between ‘blood-type’ diets and biomarkers of cardiometabolic health and whether an individual’s ABO genotype modifies any associations.

Concepts: Medicine, Epidemiology, Nutrition, Death, Blood, Red blood cell, Blood type, ABO blood group system