Discover the most talked about and latest scientific content & concepts.

Concept: Medicago


The structure of polyphenolic compounds influences their anti-oxidant potential. Finding a simple, rapid and reliable analytical method to study the structure-activity relationships for numerous samples is challenging.

Concepts: Atherosclerosis, Oxidative stress, Radical, Vitamin C, Medicago, Medicago truncatula


Galactinol synthase (GolS, EC catalyzes formation of galactinol and the subsequent synthesis of raffinose family oligosaccharides (RFOs). The relationship of GolS to drought and salt tolerance has been well documented, however, little information is available about the role of GolS gene in cold tolerance. A coding sequence of MfGolS1 cDNA was cloned from Medicago sativa subsp. falcata (i.e. M. falcata), a species that exhibits greater cold tolerance than alfalfa (Medicago sativa). MfGolS1 transcript was not detected in untreated vegetative tissues using RNA blot hybridization; however, it was greatly induced in leaves, but not in stem and petiole, after cold treatment. Higher levels of MfGolS1 transcript was induced and maintained in M. falcata than in M. sativa during cold acclimation. Accordingly, more sugars including sucrose, galactinol, raffinose and stachyose were accumulated in M. falcata than in M. sativa. The data indicated that MfGolS1 transcript and its resultant sugar accumulation were associated with the differential cold tolerance between M. falcata and M. sativa. MfGolS1 transcript was weakly induced by dehydration and salt stresses, but not responsive to abscisic acid (ABA). MfGolS1 could be induced by myo-inositol, which is proposed to participate in cold-induced MfGolS1 expression. Overexpression of MfGolS1 in tobacco resulted in elevated tolerance to freezing and chilling in transgenic plants as a result of enhanced levels of galactinol, raffinose, and stachyose. Tolerance to drought and salt stresses was also increased in the transgenic tobacco plants. It is suggested that MfGolS1 plays an important role in plant tolerance to abiotic stresses.

Concepts: DNA, Gene, Gene expression, Molecular biology, Seed, Alfalfa, Medicago, Result


Pentachloronitrobenzene (PCNB) is a fungicide belonging to the organochlorine family and used extensively in agriculture for crop production. Many studies have implied that PCNB has become an environmental concern due to its widespread contamination in eco-systems. However, whether PCNB is bioaccumulated, degraded and phytotoxic in plants is poorly understood. In this study, several alfalfa (Medicago sativa) cultivars were grown in soil with PCNB to investigate their absorption and catabolism, including PCNB residues in the soil and PCNB-induced toxic responses in plants. Alfalfa plants varied widely in their ability to accumulate and degrade PCNB. The degradation rate of PCNB was 66.26-77.68% after alfalfa growth in the soils for 20 d, while the rates in the control (soil without alfalfa) were only 48.42%. Moreover, concentrations of PCNB residues in the rhizosphere soil were significantly higher than those in the non-rhizosphere soils. Alfalfa exposed to 10 mg kg(-1) PCNB showed inhibited growth and oxidative damage, but the effects of PCNB on the cultivars differed significantly, indicating that the alfalfa cultivars have different tolerance to PCNB. Activities of invertase (INV), urease (URE), polyphenol oxidase (PPO), alkaline phosphatase (ALP) and acid phosphatase (ACP) were assayed in the treated soils and showed that the enzyme activities were altered after PCNB exposure. The URE, PPO, ALP and ACP activities were increased in soil following the planting of alfalfa. The objective of the study was to analyze the potential of different cultivars of alfalfa to accumulate and degrade PCNB from the contaminated soil.

Concepts: Agriculture, Enzyme, Alkaline phosphatase, Soil, Fabaceae, Land degradation, Alfalfa, Medicago


The potential environmental risks of transgene exposure are not clear for alfalfa (Medicago sativa subsp. sativa), a perennial crop that is cross-pollinated by insects. We gathered data on feral alfalfa in major alfalfa seed-production areas in the western United States to (1) evaluate evidence that feral transgenic plants spread transgenes and (2) determine environmental and agricultural production factors influencing the location of feral alfalfa, especially transgenic plants. Road verges in Fresno, California; Canyon, Idaho; and Walla Walla, Washington were surveyed in 2011 and 2012 for feral plants, and samples were tested for the CP4 EPSPS protein that conveys resistance to glyphosate. Of 4580 sites surveyed, feral plants were observed at 404 sites. Twenty-seven percent of these sites had transgenic plants. The frequency of sites having transgenic feral plants varied among our study areas. Transgenic plants were found in 32.7%, 21.4.7% and 8.3% of feral plant sites in Fresno, Canyon and Walla Walla, respectively. Spatial analysis suggested that feral populations started independently and tended to cluster in seed and hay production areas, places where seed tended to drop. Significant but low spatial auto correlation suggested that in some instances, plants colonized nearby locations. Neighboring feral plants were frequently within pollinator foraging range; however, further research is needed to confirm transgene flow. Locations of feral plant clusters were not well predicted by environmental and production variables. However, the likelihood of seed spillage during production and transport had predictive value in explaining the occurrence of transgenic feral populations. Our study confirms that genetically engineered alfalfa has dispersed into the environment, and suggests that minimizing seed spillage and eradicating feral alfalfa along road sides would be effective strategies to minimize transgene dispersal.

Concepts: Plant, Fabaceae, Pollination, Legume, Genetically modified organism, Alfalfa, Medicago, Genetic engineering


The present study showed all the 16 strains isolated and identified from the alfalfa rhizosphere and nodules, and registered in GenBank, to be good candidates for targeted use in studies addressing the rather weak known mechanism of plant growth promotion, including that of Medicago truncatula, a molecular crop model. Based on physiological, biochemical and molecular analysis, the 16 isolates obtained were ascribed to the following five families: Bacillaceae, Rhizobiaceae, Xantomonadaceae, Enterobacteriaceae and Pseudomonadaceae, within which 9 genera and 16 species were identified. All these bacteria were found to significantly enhance fresh and dry weight of root, shoots and whole 5-week-old seedlings. The bacteria were capable of the in vitro use of tryptophan to produce indolic compounds at various concentrations. The ability of almost all the strains to enhance growth of seedlings and individual roots was positively correlated with the production of the indolic compounds (r = 0.69; P = 0.0001), but not with the 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity (no correlation). For some strains, it was difficult to conclude whether the growth promotion was related to the production of indolic compounds or to the ACCD activity. It is likely that promotion of M. truncatula root development involves also root interaction with pseudomonads, known to produce 2,4-diacetylphloroglucinol (DAPG), a secondary metabolite reported to alter the root architecture by interacting with an auxin-dependent signaling pathway. Inoculation of seedlings with Pseudomonas brassicacearum KK 5, a bacterium known for its lowest ability to produce indolic compounds, the highest ACCD activity and the presence of the phlD gene responsible for DAPG precursor synthesis, resulted in a substantial promotion of root development. Inoculation with the strain increased the endogenous IAA level in M. truncatula leaves after inoculation of 5-week-old seedlings. Three other strains examined in this study also increased the IAA level in the leaves upon inoculation. Moreover, several other factors such as mobilization of phosphorus and zinc to make them available to plants, iron sequestration by siderophore production and the ability to ammonia production also contributed substantially to the phytostimulatory biofertilizing potential of isolated strains. There is, thus, evidence that Medicago truncatula growth promotion by rhizobacteria involves more than one mechanism.

Concepts: Immune system, Bacteria, Molecular biology, Pseudomonas aeruginosa, Pseudomonas, Root, Medicago, Medicago truncatula


Winter damage, especially in northern climates, is a major limitation of the utilization of perennial forages such as alfalfa. Therefore, improving freezing tolerance is imperative in alfalfa genetic breeding. However, freezing tolerance is a complex trait that is determined by many genes. To understand the complex regulation mechanisms of freezing tolerance in alfalfa, we performed small RNA sequencing analysis under cold (4°C) and freezing stress (-8°C). The sequencing results revealed that 173 known and 24 novel miRNAs were expressed, and that the expressions of 35 miRNAs were affected by cold and/or freezing stress. Meanwhile, 105 target genes cleaved by these miRNAs were characterized by degradome sequencing. These targets were associated with biological regulation, cellular process, metabolic process and response to stress. Interestingly, most of them were characterized as transcription factors (TFs), including auxin response factors (ARFs), SBP, NAC, AP2/ERF and GRF, which play important roles in plants' abiotic responses. In addition, important miRNAs and mRNAs involved in nodulation were also identified, for example, the relationship between miR169 and the TF CCAAT (also named as NF-YA/HAP2), which suggested that nodulation has an important function in freezing tolerance in alfalfa. Our results provide valuable information to determine the molecular mechanisms of freezing tolerance in alfalfa, which will aid the application of these miRNAs and their targets in the improvement of freezing tolerance in alfalfa and related plants.

Concepts: DNA, Gene, Genetics, Gene expression, Transcription, Molecular biology, RNA, Medicago


The glyphosate-resistant gene, GR79Ms, was successfully introduced into the genome of alfalfa. The transgenic events may serve as novel germplasm resources in alfalfa breeding. Weed competition can reduce the alfalfa yield, generating new alfalfa germplasm with herbicide resistance is essential. To obtain transgenic alfalfa lines with glyphosate resistance, a new synthetic glyphosate-resistant gene GR79Ms encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) was introduced into alfalfa germplasm by Agrobacterium tumefaciens-mediated transformation. In total, 67 transformants were obtained. PCR and Southern blot analyses confirmed that GR79Ms was successfully inserted into the genome of alfalfa. Reverse transcription-PCR and western blot analyses further demonstrated the expression of GR79Ms and its product, GR79Ms EPSPS. Moreover, two homozygous transgenic lines were developed in the T2 generation by means of molecular-assisted selection. Herbicide tolerance spray tests showed that the transgenic plants T0-GR1, T0-GR2, T0-GR3 and two homozygous lines were able to tolerate fourfold higher commercial usage of glyphosate than non-transgenic plants.

Concepts: Gene expression, Molecular biology, Horizontal gene transfer, Western blot, Southern blot, Alfalfa, Medicago, Glyphosate


Agrobacterium tumefaciens 1D1609 is a highly virulent strain isolated from a crown gall tumor of alfalfa (Medicago sativa L.). Compared to other well-characterized A. tumefaciens strains, such as C58 and Ach5, 1D1609 has a distinctive host range. Here, we report its complete genome sequence to facilitate future studies.

Concepts: Genome, Agrobacterium, Agrobacterium tumefaciens, Bacterial conjugation, Medicago, Gall, Rhizobiales, Rhizobiaceae


Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars.

Concepts: Economics, Fabaceae, Legume, Alfalfa, Medicago, Hay, Silage, Clover


Plant breeding for resistance to agricultural pests is an essential element in the development of integrated crop management systems; however, the molecular and genetic mechanisms underlying resistance are poorly understood. In this pilot study, a transcriptomic analysis of a resistant ® vs. a susceptible (S) variety of alfalfa, with (+T) or without (-T) thrips (= 4 treatments) was conducted, ‘GN-1’ (China) was defined as the resistant cultivar, and ‘WL323’ (America) was defined as the susceptible cultivar.

Concepts: Agriculture, Variety, Food security, Breeding, Medicago, Cultivar, Plant breeding, Cultigen