Discover the most talked about and latest scientific content & concepts.

Concept: Media technology


BACKGROUND:Theoretically, communication systems have the potential to increase the productivity of anesthesiologists supervising anesthesia providers. We evaluated the maximal potential of communication systems to increase the productivity of anesthesia care by enhancing anesthesiologists' coordination of care (activities) among operating rooms (ORs).METHODS:At hospital A, data for 13,368 pages were obtained from files recorded in the internal alphanumeric text paging system. Pages from the postanesthesia care unit were processed through a numeric paging system and thus not included. At hospital B, in a different US state, 3 of the authors categorized each of 898 calls received using the internal wireless audio system (Vocera(®)). Lower and upper 95% confidence limits for percentages are the values reported.RESULTS:At least 45% of pages originated from outside the ORs (e.g., 20% from holding area) at hospital A and at least 56% of calls (e.g., 30% administrative) at hospital B. In contrast, requests from ORs for urgent presence of the anesthesiologist were at most 0.2% of pages at hospital A and 1.8% of calls at hospital B.CONCLUSIONS:Approximately half of messages to supervising anesthesiologists are for activity originating outside the ORs being supervised. To use communication tools to increase anesthesia productivity on the day of surgery, their use should include a focus on care coordination outside ORs (e.g., holding area) and among ORs (e.g., at the control desk).

Concepts: Surgery, Anesthesia, Confidence interval, Anesthesiologist, Operating system, Media technology, Post anesthesia care unit, Paging


New Caledonian crows are renowned for their unusually sophisticated tool behaviour. Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds. To obtain first estimates of activity budgets, as well as close-up observations of tool-assisted foraging, we equipped 19 wild crows with self-developed miniature video cameras, yielding more than 10 h of analysable video footage for 10 subjects. While only four crows used tools during recording sessions, they did so extensively: across all 10 birds, we conservatively estimate that tool-related behaviour occurred in 3% of total observation time, and accounted for 19% of all foraging behaviour. Our video-loggers provided first footage of crows manufacturing, and using, one of their most complex tool types-hooked stick tools-under completely natural foraging conditions. We recorded manufacture from live branches of paperbark (Melaleuca sp.) and another tree species (thought to be Acacia spirorbis), and deployment of tools in a range of contexts, including on the forest floor. Taken together, our video recordings reveal an ‘expanded’ foraging niche for hooked stick tools, and highlight more generally how crows routinely switch between tool- and bill-assisted foraging.

Concepts: Scientific method, Observation, Recording, Hypothesis, Manufacturing, Media technology, Camera, Tool


We aimed to document the experience of buying abortion pills from online vendors that do not require a prescription and to evaluate the active ingredient content of the pills received.

Concepts: Internet, History of the Internet, Media technology, Abortifacient, First-person shooter, Mifepristone, Misoprostol


Minimally invasive, automated cot-side tools for monitoring early neurological development can be used to guide individual treatment and benchmark novel interventional studies. We develop an automated estimate of the EEG maturational age (EMA) for application to serial recordings in preterm infants. The EMA estimate was based on a combination of 23 computational features estimated from both the full EEG recording and a period of low EEG activity (46 features in total). The combination function (support vector regression) was trained using 101 serial EEG recordings from 39 preterm infants with a gestational age less than 28 weeks and normal neurodevelopmental outcome at 12 months of age. EEG recordings were performed from 24 to 38 weeks post-menstrual age (PMA). The correlation between the EMA and the clinically determined PMA at the time of EEG recording was 0.936 (95%CI: 0.932-0.976; n = 39). All infants had an increase in EMA between the first and last EEG recording and 57/62 (92%) of repeated measures within an infant had an increasing EMA with PMA of EEG recording. The EMA is a surrogate measure of age that can accurately determine brain maturation in preterm infants.

Concepts: Pregnancy, Brain, Mathematics, Embryo, Fetus, Electroencephalography, Minimally invasive, Media technology


The exponential growth of high-throughput DNA sequence data has posed great challenges to genomic data storage, retrieval and transmission. Compression is a critical tool to address these challenges, where many methods have been developed to reduce the storage size of the genomes and sequencing data (reads, quality scores and metadata). However, genomic data are being generated faster than they could be meaningfully analyzed, leaving a large scope for developing novel compression algorithms that could directly facilitate data analysis beyond data transfer and storage. In this article, we categorize and provide a comprehensive review of the existing compression methods specialized for genomic data and present experimental results on compression ratio, memory usage, time for compression and decompression. We further present the remaining challenges and potential directions for future research.

Concepts: DNA, Gene, Genome, Computer storage, Data compression, Media technology, Computer data storage, Image compression


So many soundscapes-found, archived, preserved, or composed-consist of multiple sound elements. The interaction among these individual sounds can conflict and obscure, or complement and harmonize. The creation of sound recordings through the multitrack production process offers a point of view into how an overall soundscape can be successfully created, and its multiple sounds effectively orchestrated.

Concepts: Recording, Euclidean geometry, Sound, Media technology, Process management, Reverberation, Soundproofing, Recording studio


Autonomous listening devices are increasingly used to study vocal aquatic animals, and there is a constant need to record longer or with greater bandwidth, requiring efficient use of memory and battery power. Real-time compression of sound has the potential to extend recording durations and bandwidths at the expense of increased processing operations and therefore power consumption. Whereas lossy methods such as MP3 introduce undesirable artifacts, lossless compression algorithms (e.g., flac) guarantee exact data recovery. But these algorithms are relatively complex due to the wide variety of signals they are designed to compress. A simpler lossless algorithm is shown here to provide compression factors of three or more for underwater sound recordings over a range of noise environments. The compressor was evaluated using samples from drifting and animal-borne sound recorders with sampling rates of 16-240 kHz. It achieves >87% of the compression of more-complex methods but requires about 1/10 of the processing operations resulting in less than 1 mW power consumption at a sampling rate of 192 kHz on a low-power microprocessor. The potential to triple recording duration with a minor increase in power consumption and no loss in sound quality may be especially valuable for battery-limited tags and robotic vehicles.

Concepts: Complexity, Information theory, Data compression, Media technology, Gramophone record, Kolmogorov complexity, Lossless data compression, Lossless


Supra-granular layers of sensory cortex are known to exhibit sparse firing. In rodent vibrissal cortex, a small fraction of neurons in layer 2 and 3 (L2/3) respond to whisker stimulation. Here, we combined whole-cell recording and two-photon imaging in anesthetized mice and quantified the synaptic response and spiking profile of L2/3 neurons. Previous literature has shown that neurons across layers of vibrissal cortex are tuned to the velocity of whisker movement. We therefore used a broad range of stimuli that included the standard range of velocities (0-1.2 degree/ms) and extended to a “sharp” high-velocity deflection (3.8 degree/ms). Consistent with previous literature, whole-cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in the majority of neurons. The action-potential threshold of spikes evoked by the sharp stimulus was significantly lower than that of the spontaneous spikes. Juxta-cellular recordings confirmed that application of sharp stimulus to single or multiple whiskers produced temporally precise spiking with minimal trial-to-trial spike-count variability (Fano factors equal or close to the theoretical minimum). Two-photon imaging further confirmed that most neurons that were not responsive to the standard deflections responded to the sharp stimulus. Altogether, our results indicate that sparseness in L2/3 cortex depends on the choice of stimulus: strong single- or multi-whisker stimulation can induce the transition from sparse to “dense” population response.

Concepts: Neuron, Action potential, Layer, Recording, Media technology, OSI model, Gramophone record, Evocation


Multidimensional data recording inside nanoporous high-silica glass by a femtosecond laser beam has been investigated. It is shown that three femtosecond laser pulses at pulse repetition rates up to 1 MHz are sufficient for recording 3 bits of information inside nanoporous glass, which is an order of magnitude lower than the number of pulses required for data writing in silica glass and provides a corresponding gain in the data writing speed. Multilayer data recording and reading were demonstrated providing the storage density corresponding to the capacity of 25 GB in the optical compact disc form factor. An outstanding thermal stability of the proposed optical data storage is confirmed by the 24 h long heat treatment at 700°C, which could not damage the recorded data.

Concepts: Recording, Media technology, Compact Disc, Blu-ray Disc, Holographic Versatile Disc, DVD, CD-ROM, CD-RW


Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young’s modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

Concepts: Time, Earth's magnetic field, Future, Young's modulus, Carbon fiber, Nacre, Media technology, Gramophone record