Discover the most talked about and latest scientific content & concepts.

Concept: Meat


Recently, some US cohorts have shown a moderate association between red and processed meat consumption and mortality supporting the results of previous studies among vegetarians. The aim of this study was to examine the association of red meat, processed meat, and poultry consumption with the risk of early death in the European Prospective Investigation into Cancer and Nutrition (EPIC).

Concepts: Nutrition, Meat, White meat


We investigated the evolution and epidemiology of a novel livestock-associated methicillin-resistant Staphylococcus aureus strain, which colonizes and infects urban-dwelling Danes even without a Danish animal reservoir. Genetic evidence suggests both poultry and human adaptation, with poultry meat implicated as a probable source.

Concepts: Bacteria, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Meat, Livestock, Adaptation, Charles Darwin, Poultry


Cathelicidins are small, cationic, antimicrobial peptides found in humans and other species, including farm animals (cattle, horses, pigs, sheep, goats, chickens, rabbits and in some species of fish). These proteolytically activated peptides are part of the innate immune system of many vertebrates. These peptides show a broad spectrum of antimicrobial activity against bacteria, enveloped viruses and fungi. Apart from exerting direct antimicrobial effects, cathelicidins can also trigger specific defense responses in the host. Their roles in various pathophysiological conditions have been studied in mice and humans, but there are limited information about their expression sites and activities in livestock. The aim of the present review is to summarize current information about these antimicrobial peptides in farm animals, highlighting peptide expression sites, activities, and future applications for human and veterinary medicine.

Concepts: Immune system, Evolution, Organism, Microbiology, Innate immune system, Mammal, Meat, Livestock


Vegetarians and others who do not eat meat have been observed to have lower incidence rates than meat eaters of some chronic diseases, but it is unclear whether this translates into lower mortality.

Concepts: Medicine, Epidemiology, Chronic, United Kingdom, England, Meat, Jainism, Ethics of eating meat


Cured meat intake-a recent carcinogenic factor-may increase the risk of COPD, but its association with asthma remains unknown. Though body mass index (BMI) is a likely risk factor for asthma, its role in the diet-asthma association as a mediator has never been studied. We investigated the association between cured meat intake and worsening asthma symptoms in adults, and the role of BMI as a potential mediator.

Concepts: Obesity, Mass, Body mass index, The Association, Meat


Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion-that beef production demands about 1 order of magnitude more resources than alternative livestock categories-is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef.

Concepts: Agriculture, Water, Water pollution, Milk, Meat, Irrigation, Livestock, Greenhouse gas


It is the position of the Academy of Nutrition and Dietetics that appropriately planned vegetarian, including vegan, diets are healthful, nutritionally adequate, and may provide health benefits for the prevention and treatment of certain diseases. These diets are appropriate for all stages of the life cycle, including pregnancy, lactation, infancy, childhood, adolescence, older adulthood, and for athletes. Plant-based diets are more environmentally sustainable than diets rich in animal products because they use fewer natural resources and are associated with much less environmental damage. Vegetarians and vegans are at reduced risk of certain health conditions, including ischemic heart disease, type 2 diabetes, hypertension, certain types of cancer, and obesity. Low intake of saturated fat and high intakes of vegetables, fruits, whole grains, legumes, soy products, nuts, and seeds (all rich in fiber and phytochemicals) are characteristics of vegetarian and vegan diets that produce lower total and low-density lipoprotein cholesterol levels and better serum glucose control. These factors contribute to reduction of chronic disease. Vegans need reliable sources of vitamin B-12, such as fortified foods or supplements.

Concepts: Medicine, Nutrition, Diabetes mellitus, Obesity, Vitamin B12, Meat, Vegetarianism, Veganism


Vegetarian and vegan diets have become more popular among adolescents and young adults. However, few studies have investigated the nutritional status of vegans, who may be at risk of nutritional deficiencies.

Concepts: Nutrition, Vitamin B12, Meat, Diets, Vegetarianism, Veganism, Intentional living, Animal product


Demand for animal protein for human consumption is rising globally at an unprecedented rate. Modern animal production practices are associated with regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Despite the significant potential consequences for antimicrobial resistance, there has been no quantitative measurement of global antimicrobial consumption by livestock. We address this gap by using Bayesian statistical models combining maps of livestock densities, economic projections of demand for meat products, and current estimates of antimicrobial consumption in high-income countries to map antimicrobial use in food animals for 2010 and 2030. We estimate that the global average annual consumption of antimicrobials per kilogram of animal produced was 45 mg⋅kg(-1), 148 mg⋅kg(-1), and 172 mg⋅kg(-1) for cattle, chicken, and pigs, respectively. Starting from this baseline, we estimate that between 2010 and 2030, the global consumption of antimicrobials will increase by 67%, from 63,151 ± 1,560 tons to 105,596 ± 3,605 tons. Up to a third of the increase in consumption in livestock between 2010 and 2030 is imputable to shifting production practices in middle-income countries where extensive farming systems will be replaced by large-scale intensive farming operations that routinely use antimicrobials in subtherapeutic doses. For Brazil, Russia, India, China, and South Africa, the increase in antimicrobial consumption will be 99%, up to seven times the projected population growth in this group of countries. Better understanding of the consequences of the uninhibited growth in veterinary antimicrobial consumption is needed to assess its potential effects on animal and human health.

Concepts: Natural selection, Bacteria, Agriculture, Antibiotic resistance, Meat, Livestock, World population, Green Revolution


Growing evidence suggests that effects of red meat consumption on coronary heart disease (CHD) and type 2 diabetes could vary depending on processing. We reviewed the evidence for effects of unprocessed (fresh/frozen) red and processed (using sodium/other preservatives) meat consumption on CHD and diabetes. In meta-analyses of prospective cohorts, higher risk of CHD is seen with processed meat consumption (RR per 50 g: 1.42, 95 %CI = 1.07-1.89), but a smaller increase or no risk is seen with unprocessed meat consumption. Differences in sodium content (~400 % higher in processed meat) appear to account for about two-thirds of this risk difference. In similar analyses, both unprocessed red and processed meat consumption are associated with incident diabetes, with higher risk per g of processed (RR per 50 g: 1.51, 95 %CI = 1.25-1.83) versus unprocessed (RR per 100 g: 1.19, 95 % CI = 1.04-1.37) meats. Contents of heme iron and dietary cholesterol may partly account for these associations. The overall findings suggest that neither unprocessed red nor processed meat consumption is beneficial for cardiometabolic health, and that clinical and public health guidance should especially prioritize reducing processed meat consumption.

Concepts: Nutrition, Coronary artery disease, Heart, Meat, Saturated fat, Pork, Red meat, White meat