SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mean absolute percentage error

28

Accurate estimates of chlorophyll-a concentration (Chl-a) from remotely sensed data for inland waters are challenging due to their optical complexity. In this study, a framework of Chl-a estimation is established for optically complex inland waters based on combination of water optical classification and two semi-empirical algorithms. Three spectrally distinct water types (Type I to Type III) are first identified using a clustering method performed on remote sensing reflectance (R(rs)) from datasets containing 231 samples from Lake Taihu, Lake Chaohu, Lake Dianchi, and Three Gorges Reservoir. The classification criteria for each optical water type are subsequently defined for MERIS images based on the spectral characteristics of the three water types. The criteria cluster every R(rs) spectrum into one of the three water types by comparing the values from band 7 (central band: 665nm), band 8 (central band: 681.25nm), and band 9 (central band: 708.75nm) of MERIS images. Based on the water classification, the type-specific three-band algorithms (TBA) and type-specific advanced three-band algorithm (ATBA) are developed for each water type using the same datasets. By pre-classifying, errors are decreased for the two algorithms, with the mean absolute percent error (MAPE) of TBA decreasing from 36.5% to 23% for the calibration datasets, and from 40% to 28% for ATBA. The accuracy of the two algorithms for validation data indicates that optical classification eliminates the need to adjust the optimal locations of the three bands or to re-parameterize to estimate Chl-a for other waters. The classification criteria and the type-specific ATBA are additionally validated by two MERIS images. The framework of first classifying optical water types based on reflectance characteristics and subsequently developing type-specific algorithms for different water types is a valid scheme for reducing errors in Chl-a estimation for optically complex inland waters.

Concepts: Estimator, Optics, Water, Spectrum, Type, Mean absolute percentage error, The Band

28

We investigated intermodality agreements of strains from two-dimensional echocardiography (2DE) and cardiac magnetic resonance (CMR) feature tracking (FT) in the assessment of right (RV) and left ventricular (LV) mechanics in tetralogy of Fallot (TOF). Patients were prospectively studied with 2DE and CMR performed contiguously. LV and RV strains were computed separately using 2DE and CMR-FT. Segmental and global longitudinal strains (GLS) for the LV and RV were measured from four-chamber views; LV radial (global radial strain [GRS]) and circumferential strains (GCS) measured from short-axis views. Intermodality and interobserver agreements were examined. In 40 patients (20 TOF, mean age 23 years and 20 adult controls), LV, GCS showed narrowest intermodality limits of agreement (mean percentage error 9.5%), followed by GLS (16.4%). RV GLS had mean intermodality difference of 25.7%. GLS and GCS had acceptable interobserver agreement for the LV and RV with both 2DE and CMR-FT, whereas GRS had high interobserver and intermodality variability. In conclusion, myocardial strains for the RV and LV derived using currently available 2DE and CMR-FT software are subject to considerable intermodality variability. For both modalities, LV GCS, LV GLS, and RV GLS are reproducible enough to warrant further investigation of incremental clinical merit.

Concepts: Heart, Tetralogy of Fallot, Mean absolute percentage error

5

This study tested the validity of revolutions per minute (RPM) measurements from the Pennington Pedal Desk™. Forty-four participants (73 % female; 39 ± 11.4 years-old; BMI 25.8 ± 5.5 kg/m(2) [mean ± SD]) completed a standardized trial consisting of guided computer tasks while using a pedal desk for approximately 20 min. Measures of RPM were concurrently collected by the pedal desk and the Garmin Vector power meter. After establishing the validity of RPM measurements with the Garmin Vector, we performed equivalence tests, quantified mean absolute percent error (MAPE), and constructed Bland-Altman plots to assess agreement between RPM measures from the pedal desk and the Garmin Vector (criterion) at the minute-by-minute and trial level (i.e., over the approximate 20 min trial period).

Concepts: Measurement, Psychometrics, Criterion validity, Frequency, Approximation, Numerical analysis, Mean absolute percentage error, Revolutions per minute

4

The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

Concepts: Angular momentum, Measurement, Activity, Velocity, Task, Mean absolute percentage error, Symmetric mean absolute percentage error, Nike, Inc.

1

The rapid growth of very elderly populations requires accurate population estimates up to the highest ages. However, it is recognised that estimates derived from census counts are often unreliable. Methods that make use of death data have not previously been evaluated for Australia and New Zealand. The aim was to evaluate a number of nearly-extinct cohort methods for producing very elderly population estimates by age and sex for Australia and New Zealand. The accuracy of official estimates was also assessed. Variants of three nearly-extinct cohort methods, the Survivor Ratio method, the Das Gupta method and a new method explicitly allowing for falling mortality over time, were evaluated by retrospective application over the period 1976-1996. Estimates by sex and single years of age were compared against numbers derived from the extinct cohort method. Errors were measured by the Weighted Mean Absolute Percentage Error. It is confirmed that for Australian females the Survivor Ratio method constrained to official estimates for ages 90+ performed well. However, for Australian males and both sexes in New Zealand, more accurate estimates were obtained by constraining the Survivor Ratio method to official estimates for ages 85+. Official estimates in Australia proved reasonably accurate for ages 90+ but at 100+ they varied significantly in accuracy from year to year. Estimates produced by Statistics New Zealand in aggregate for ages 90+ proved very accurate. We recommend the use of the Survivor Ratio method constrained to official estimates for ages 85+ to create very elderly population estimates for Australia and New Zealand.

Concepts: Male, Female, Demography, Population, Sex, Immigration, New Zealand, Mean absolute percentage error

1

BACKGROUND: Tuberculosis (TB) is a serious public health issue in developing countries. Early prediction of TB epidemic is very important for its control and intervention. We aimed to develop an appropriate model for predicting TB epidemics and analyze its seasonality in China. METHODS: Data of monthly TB incidence cases from January 2005 to December 2011 were obtained from the Ministry of Health, China. A seasonal autoregressive integrated moving average (SARIMA) model and a hybrid model which combined the SARIMA model and a generalized regression neural network model were used to fit the data from 2005 to 2010. Simulation performance parameters of mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the goodness-of-fit between these two models. Data from 2011 TB incidence data was used to validate the chosen model. RESULTS: Although both two models could reasonably forecast the incidence of TB, the hybrid model demonstrated better goodness-of-fit than the SARIMA model. For the hybrid model, the MSE, MAE and MAPE were 38969150, 3406.593 and 0.030, respectively. For the SARIMA model, the corresponding figures were 161835310, 8781.971 and 0.076, respectively. The seasonal trend of TB incidence is predicted to have lower monthly incidence in January and February and higher incidence from March to June. CONCLUSIONS: The hybrid model showed better TB incidence forecasting than the SARIMA model. There is an obvious seasonal trend of TB incidence in China that differed from other countries.

Concepts: Regression analysis, Epidemiology, Prediction, Futurology, Future, Mean squared error, Forecasting, Mean absolute percentage error

0

Emerging opportunities to measure individual and population-level health data with activity monitors during recreational running activities may set the stage for new research possibilities in mass participation running events and marathon medicine. This study explores the applicability of consumer activity monitor data in a preliminary study for future marathon health research with a cohort of 12 (n = 12) participants completing a 3.379 km walking or running course. This study explored the feasibility of collecting pace and distance data from Fitbit brand consumer activity monitors, from access to user data to reporting of data characteristics and data analysis. We show that a large percentage of participant data can be successfully retrieved from Fitbit consumer activity monitor devices for analysis in marathon health research, and that identifying variations in pace across participants is a practical possibility. We note a mean absolute percentage error of 13% over the true distance of 3.379 km, a higher error than that reported by other studies. We also observe a Pearson correlation coefficient between participant variation in pace and absolute distance error of 0.61. This study provides preliminary evidence to support the applicability of consumer activity monitor data in marathon health research.

Concepts: Statistics, Participation, Spearman's rank correlation coefficient, Correlation and dependence, Pearson product-moment correlation coefficient, Karl Pearson, Running, Mean absolute percentage error

0

Soil moisture data can reflect valuable information on soil properties, terrain features, and drought condition. The current study compared and assessed the performance of different interpolation methods for estimating soil moisture in an area with complex topography in southwest China. The approaches were inverse distance weighting, multifarious forms of kriging, regularized spline with tension, and thin plate spline. The 5-day soil moisture observed at 167 stations and daily temperature recorded at 33 stations during the period of 2010-2014 were used in the current work. Model performance was tested with accuracy indicators of determination coefficient (R (2)), mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and modeling efficiency (ME). The results indicated that inverse distance weighting had the best performance with R (2), MAPE, RMSE, RRMSE, and ME of 0.32, 14.37, 13.02%, 0.16, and 0.30, respectively. Based on the best method, a spatial database of soil moisture was developed and used to investigate drought condition over the study area. The results showed that the distribution of drought was characterized by evidently regional difference. Besides, drought mainly occurred in August and September in the 5 years and was prone to happening in the western and central parts rather than in the northeastern and southeastern areas.

Concepts: Standard deviation, Root mean square, Mean squared error, Mean absolute percentage error, Interpolation, Root mean square deviation, Multivariate interpolation, Statistical deviation and dispersion

0

Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%).

Concepts: Time, Regression analysis, Neuroscience, United States Environmental Protection Agency, Particulate, Smog, Air pollution, Mean absolute percentage error

0

In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization (PEAD) method and making use of the relation α = 1/ε<sub>∞</sub>. Our materials dataset is formed by 30 compounds covering a wide range of band gaps and dielectric properties, and includes materials with a wide spectrum of application as thermoelectrics, photocatalysis, photovoltaics, transparent conducting oxides, and refractory materials. Our results show that the scPBE0 functional provides better band gaps than the non self-consistent hybrids PBE0 and HSE06, but scPBE0 does not show significant improvement on the description of the static dielectric constants. Overall, the scPBE0 data exhibit a mean absolute percentage error of 14 % (band gaps) and 10 % (α = 1/ε<sub>∞</sub>). For materials with weak dielectric screening and large excitonic biding energies scPBE0, unlike PBE0 and HSE06, overestimates the band gaps, but the value of the gap become very close to the experimental value when excitonic effects are included (e.g. for SiO<sub>2</sub>). However, special caution must be given to the compounds with small band gaps due to the tendency of scPBE0 to overestimate the dielectric constant in proximity of the metallic limit.

Concepts: Electricity, Mathematics, Nitrogen, Band gap, Mean absolute percentage error, Dielectric, Permittivity, Electric and magnetic fields in matter