Discover the most talked about and latest scientific content & concepts.

Concept: Maximum life span


Leucocyte telomere length (LTL) shortening is associated with cardiovascular ischemic events and mortality in humans, but data on its association with subclinical atherosclerosis are scarce. Whether the incidence and severity of subclinical atherosclerosis are associated with the abundance of critically short telomeres, a major trigger of cellular senescence, remains unknown.

Concepts: Death, Senescence, Cell division, Radical, Telomerase, Telomere, Maximum life span, Immortality


Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world’s oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints.

Concepts: Senescence, Mortality rate, Demography, Gerontology, Life expectancy, Aging, Maximum life span, Longevity


The human lifespan has traversed a long evolutionary and historical path, from short-lived primate ancestors to contemporary Japan, Sweden, and other longevity frontrunners. Analyzing this trajectory is crucial for understanding biological and sociocultural processes that determine the span of life. Here we reveal a fundamental regularity. Two straight lines describe the joint rise of life expectancy and lifespan equality: one for primates and the second one over the full range of human experience from average lifespans as low as 2 y during mortality crises to more than 87 y for Japanese women today. Across the primate order and across human populations, the lives of females tend to be longer and less variable than the lives of males, suggesting deep evolutionary roots to the male disadvantage. Our findings cast fresh light on primate evolution and human history, opening directions for research on inequality, sociality, and aging.

Concepts: Human, Life, Demography, Population, Life expectancy, Primate, World population, Maximum life span


Oxidative stress is the major cause of skin aging that includes wrinkles, pigmentation, and weakened wound healing ability. Application of antioxidants in skin care is well accepted as an effective approach to delay the skin aging process. Methylene blue (MB), a traditional mitochondrial-targeting antioxidant, showed a potent ROS scavenging efficacy in cultured human skin fibroblasts derived from healthy donors and from patients with progeria, a genetic premature aging disease. In comparison with other widely used general and mitochondrial-targeting antioxidants, we found that MB was more effective in stimulating skin fibroblast proliferation and delaying cellular senescence. The skin irritation test, performed on an in vitro reconstructed 3D human skin model, indicated that MB was safe for long-term use, and did not cause irritation even at high concentrations. Application of MB to this 3D skin model further demonstrated that MB improved skin viability, promoted wound healing and increased skin hydration and dermis thickness. Gene expression analysis showed that MB treatment altered the expression of a subset of extracellular matrix proteins in the skin, including upregulation of elastin and collagen 2A1, two essential components for healthy skin. Altogether, our study suggests that MB has a great potential for skin care.

Concepts: Senescence, Wound healing, Collagen, Extracellular matrix, Fibroblast, Gerontology, Skin, Maximum life span


Senescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility.

Concepts: Death, Senescence, Organism, Developmental biology, Demography, Gerontology, Life expectancy, Maximum life span


Recent studies have described a reduction in the rate of improvement in American mortality. The pace of improvement is also slow by international standards. This paper attempts to identify the extent to which rising body mass index (BMI) is responsible for reductions in the rate of mortality improvement in the United States. The data for this study were obtained from subsequent cohorts of the National Health and Nutrition Examination Survey (NHANES III, 1988-1994; NHANES continuous, 1999-2010) and from the NHANES linked mortality files, which include follow-up into death records through December 2011. The role of BMI was estimated using Cox models comparing mortality trends in the presence and absence of adjustment for maximum lifetime BMI (Max BMI). Introducing Max BMI into a Cox model controlling for age and sex raised the annual rate of mortality decline by 0.54% (95% confidence interval 0.45-0.64%). Results were robust to the inclusion of other variables in the model, to differences in how Max BMI was measured, and to how trends were evaluated. The effect of rising Max BMI is large relative to international mortality trends and to alternative mortality futures simulated by the Social Security Administration. The increase in Max BMI over the period 1988-2011 is estimated to have reduced life expectancy at age 40 by 0.9 years in 2011 (95% confidence interval 0.7-1.1 years) and accounted for 186,000 excess deaths that year. Rising levels of BMI have prevented the United States from enjoying the full benefits of factors working to improve mortality.

Concepts: Nutrition, Death, Demography, Obesity, United States, Body mass index, Life expectancy, Maximum life span


Running is a popular and convenient leisure-time physical activity (PA) with a significant impact on longevity. In general, runners have a 25-40% reduced risk of premature mortality and live approximately 3years longer than non-runners. Recently, specific questions have emerged regarding the extent of the health benefits of running versus other types of PA, and perhaps more critically, whether there are diminishing returns on health and mortality outcomes with higher amounts of running. This review details the findings surrounding the impact of running on various health outcomes and premature mortality, highlights plausible underlying mechanisms linking running with chronic disease prevention and longevity, identifies the estimated additional life expectancy among runners and other active individuals, and discusses whether there is adequate evidence to suggest that longevity benefits are attenuated with higher doses of running.

Concepts: Medicine, Public health, Epidemiology, Asthma, Demography, Chronic, Life expectancy, Maximum life span


Identifying the molecular mechanisms that underlie aging and their pharmacological manipulation are key aims for improving lifelong human health. Here, we identify a critical role for Ras-Erk-ETS signaling in aging in Drosophila. We show that inhibition of Ras is sufficient for lifespan extension downstream of reduced insulin/IGF-1 (IIS) signaling. Moreover, direct reduction of Ras or Erk activity leads to increased lifespan. We identify the E-twenty six (ETS) transcriptional repressor, Anterior open (Aop), as central to lifespan extension caused by reduced IIS or Ras attenuation. Importantly, we demonstrate that adult-onset administration of the drug trametinib, a highly specific inhibitor of Ras-Erk-ETS signaling, can extend lifespan. This discovery of the Ras-Erk-ETS pathway as a pharmacological target for animal aging, together with the high degree of evolutionary conservation of the pathway, suggests that inhibition of Ras-Erk-ETS signaling may provide an effective target for anti-aging interventions in mammals. VIDEO ABSTRACT.

Concepts: Medicine, Gene expression, Senescence, Gerontology, Enzyme inhibitor, Life expectancy, Aging, Maximum life span


Geographic disparities in life expectancy are substantial and not fully explained by differences in race and socioeconomic status. To develop policies that address these inequalities, it is essential to identify other factors that account for this variation. In this study we investigated whether population well-being-a comprehensive measure of physical, mental, and social health-helps explain geographic variation in life expectancy. At the county level, we found that for every 1-standard-deviation (4.2-point) increase in the well-being score, life expectancy was 1.9 years higher for females and 2.6 years higher for males. Life expectancy and well-being remained positively associated, even after race, poverty, and education were controlled for. In addition, well-being partially mediated the established associations of race, poverty, and education with life expectancy. These findings highlight well-being as an important metric of a population’s health and longevity and as a promising focus for intervention.

Concepts: Demography, Population, Life expectancy, World population, Maximum life span, Socioeconomics, Human Development Index, Longevity


In the second half of the 20th century, the advances in human longevity observed have been accompanied by an increase in the disparities between countries and regions. Education is one of the strongest predictors of life expectancy. Studies have shown that both relative and absolute mortality differences by education within countries have been increasing, even in the most developed and egalitarian countries. It is possible to assume that groups of highly educated people who systematically display life expectancy levels which are higher than the observed best practice (record) life expectancy at the national level are vanguards who are leading the way toward a lengthening of life for the remaining population groups. This evidence based on population-level statistics and exploring an important single factor could inspire further discussion about the possibilities for extending human length of life at the national level. However, more comprehensive and reliable data covering a larger number of countries and more covariates are needed for understanding health effects of education and prospects of human longevity.

Concepts: Mortality rate, Demography, Population, Life expectancy, 20th century, World population, Maximum life span, Longevity