SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mathematics

686

The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.

Concepts: Familywise error rate, Multiple comparisons, Mathematics, Regression analysis, Medical imaging, Scientific method, Statistical inference, Magnetic resonance imaging

625

 To estimate the effect of playing Pokémon GO on the number of steps taken daily up to six weeks after installation of the game.

Concepts: Mathematics

580

Conspiratorial ideation is the tendency of individuals to believe that events and power relations are secretly manipulated by certain clandestine groups and organisations. Many of these ostensibly explanatory conjectures are non-falsifiable, lacking in evidence or demonstrably false, yet public acceptance remains high. Efforts to convince the general public of the validity of medical and scientific findings can be hampered by such narratives, which can create the impression of doubt or disagreement in areas where the science is well established. Conversely, historical examples of exposed conspiracies do exist and it may be difficult for people to differentiate between reasonable and dubious assertions. In this work, we establish a simple mathematical model for conspiracies involving multiple actors with time, which yields failure probability for any given conspiracy. Parameters for the model are estimated from literature examples of known scandals, and the factors influencing conspiracy success and failure are explored. The model is also used to estimate the likelihood of claims from some commonly-held conspiratorial beliefs; these are namely that the moon-landings were faked, climate-change is a hoax, vaccination is dangerous and that a cure for cancer is being suppressed by vested interests. Simulations of these claims predict that intrinsic failure would be imminent even with the most generous estimates for the secret-keeping ability of active participants-the results of this model suggest that large conspiracies (≥1000 agents) quickly become untenable and prone to failure. The theory presented here might be useful in counteracting the potentially deleterious consequences of bogus and anti-science narratives, and examining the hypothetical conditions under which sustainable conspiracy might be possible.

Concepts: Hypothesis, Social psychology, Logic, Theory, Conspiracy theory, Epistemology, Scientific method, Mathematics

520

The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity.

Concepts: Obesity, Food chain, Biomass, Trophic level, Mathematics, Mass, Ecology, Biology

474

A focus on novel, confirmatory, and statistically significant results leads to substantial bias in the scientific literature. One type of bias, known as “p-hacking,” occurs when researchers collect or select data or statistical analyses until nonsignificant results become significant. Here, we use text-mining to demonstrate that p-hacking is widespread throughout science. We then illustrate how one can test for p-hacking when performing a meta-analysis and show that, while p-hacking is probably common, its effect seems to be weak relative to the real effect sizes being measured. This result suggests that p-hacking probably does not drastically alter scientific consensuses drawn from meta-analyses.

Concepts: Statistical power, Science, Mathematics, Meta-analysis, Effect size, Statistics, Statistical significance, Scientific method

423

 To investigate whether language used in science abstracts can skew towards the use of strikingly positive and negative words over time.

Concepts: Empirical, Engineering, Physics, Science, Calculus, Axiom, Mathematics, Scientific method

420

Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.

Concepts: Programming language, Cognition, Reason, Mathematics, Translation, Root, Word, Language

376

Industry sponsors' financial interests might bias the conclusions of scientific research. We examined whether financial industry funding or the disclosure of potential conflicts of interest influenced the results of published systematic reviews (SRs) conducted in the field of sugar-sweetened beverages (SSBs) and weight gain or obesity.

Concepts: Mathematics, The Association, Review, Finance, Peer review, Science, Research, Scientific method

370

Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

Concepts: Species, Evolution, Biology, Sociology, Logic, Mathematics, Scientific method, Life

351

Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).

Concepts: Mathematics, United States, Greenhouse gas, Statistics, Air pollution, Methane, Carbon dioxide, Natural gas