Discover the most talked about and latest scientific content & concepts.

Concept: Materials science


Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/β-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.

Concepts: DNA, Protein, Evolution, Amino acid, Crystal, Polymer, Materials science, Polyester


Inducing thermal gradients in fluid systems with initial, well-defined density gradients results in the formation of distinct layered patterns, such as those observed in the ocean due to double-diffusive convection. In contrast, layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, lattes formed by pouring espresso into a glass of warm milk. Here, we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering emerges over a time scale of minutes. We identify critical conditions to produce the layering, and relate the results quantitatively to double-diffusive convection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties vary step-wise along the length of the material.

Concepts: Fluid dynamics, Sociology, Experiment, Fluid mechanics, Viscosity, Liquid, Materials science, Latte


The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

Concepts: Metal, Solid, Materials science, Tensile strength, Glass, Shock wave, Amorphous solids, Amorphous metal


Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic bandgap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the “top-down,” or “bottom-up” methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer co-solutes into the crystal phase [N. A. Mahynski, A. Z. Panagiotopoulos, D. Meng, S. K. Kumar, Nat. Commun., 2014, 5, 4472]. By tuning the polymer’s morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously this approach has only been demonstrated in the limiting case of close-packed crystals. Here we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this “structure-directing agent” paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm’s basic principles between relatively simple crystals and more complex ones suggests this represents a valuable addition to presently known self-assembly techniques.

Concepts: Crystal, Crystal structure, Condensed matter physics, Sol-gel, Materials science, Colloidal crystal, Photonic crystal, Crystals


Under high-strain-rate compression (strain rate approximately 10(3) s(-1)), nacre (mother-of-pearl) exhibits surprisingly high fracture strength vis-à-vis under quasi-static loading (strain rate 10(-3) s(-1)). Nevertheless, the underlying mechanism responsible for such sharply different behaviors in these two loading modes remains completely unknown. Here we report a new deformation mechanism, adopted by nacre, the best-ever natural armor material, to protect itself against predatory penetrating impacts. It involves the emission of partial dislocations and the onset of deformation twinning that operate in a well-concerted manner to contribute to the increased high-strain-rate fracture strength of nacre. Our findings unveil that Mother Nature delicately uses an ingenious strain-rate-dependent stiffening mechanism with a purpose to fight against foreign attacks. These findings should serve as critical design guidelines for developing engineered body armor materials.

Concepts: Materials science, Nature, Young's modulus, Solid mechanics, The Onset, Nacre, Aragonite, Deformation


The potential of thermoelectric materials to generate electricity from the waste heat can play a key role in achieving a global sustainable energy future. In order to proceed in this direction, it is essential to have thermoelectric materials that are environmentally friendly and exhibit high figure of merit, ZT. Oxide thermoelectric materials are considered ideal for such applications. High thermoelectric performance has been reported in single crystals of Ca3Co4O9. However, for large scale applications single crystals are not suitable and it is essential to develop high-performance polycrystalline thermoelectric materials. In polycrystalline form, Ca3Co4O9 is known to exhibit much weaker thermoelectric response than in single crystal form. Here, we report the observation of enhanced thermoelectric response in polycrystalline Ca3Co4O9 on doping Tb ions in the material. Polycrystalline Ca3-xTbxCo4O9 (x = 0.0-0.7) samples were prepared by a solid-state reaction technique. Samples were thoroughly characterized using several state of the art techniques including XRD, TEM, SEM and XPS. Temperature dependent Seebeck coefficient, electrical resistivity and thermal conductivity measurements were performed. A record ZT of 0.74 at 800 K was observed for Tb doped Ca3Co4O9 which is the highest value observed till date in any polycrystalline sample of this system.

Concepts: Crystal, Heat, Silicon, Solid, Materials science, Electrical conductivity, Thermoelectric effect, Crystallite


Electronic carriers in graphene show a high carrier mobility at room temperature. Thus, this system is widely viewed as a potential future charge-based high-speed electronic material to complement-or replace-silicon. At the same time, the spin properties of graphene have suggested improved capability for spin-based electronics or spintronics and spin-based quantum computing. As a result, the detection, characterization and transport of spin have become topics of interest in graphene. Here we report a microwave photo-excited transport study of monolayer and trilayer graphene that reveals an unexpectedly strong microwave-induced electrical response and dual microwave-induced resonances in the dc resistance. The results suggest the resistive detection of spin resonance, and provide a measurement of the g-factor, the spin relaxation time and the sub-lattice degeneracy splitting at zero magnetic field.

Concepts: Electron, Electromagnetism, Fundamental physics concepts, Spin, Nuclear magnetic resonance, Magnetic moment, Materials science, Physical quantities


Understanding radiation responses of Fe-based metals is essential to develop radiation tolerant steels for longer and safer life cycles in harsh reactor environments. Nanograined metals have been explored as self-healing materials due to point-defect recombination at grain boundaries. The fundamental defect-boundary interactions, however, are not yet well understood. We discover that the interactions are always mediated by formation and annealing of chain-like defects, which consist of alternately positioned interstitials and vacancies. These chain-like defects are closely correlated to the patterns of defect formation energy minima on the grain boundary, which depend on specific boundary configurations. Through chain-like defects, a point defect effectively translates large distances, to annihilate with its opposite, thus grain boundaries act as highly efficient defect sinks that cannot saturate under extreme radiation conditions.

Concepts: Electron, Materials science, Metallurgy, Steel, Crystallographic defect, Gamma ray


Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

Concepts: Muscle, Cellular differentiation, Cell culture, Tissues, Materials science, Tissue, Soft tissue, Young's modulus


Because of its optical and electrical properties, large surfaces, and compatibility with standard silicon processes, porous silicon is a very interesting material in photovoltaic and microelectromechanical systems technology. In some applications, porous silicon is annealed at high temperature and, consequently, the cylindrical pores that are generated by anodization or stain etching reorganize into randomly distributed closed sphere-like pores. Although the design of devices which involve this material needs an accurate evaluation of its mechanical properties, only few researchers have studied the mechanical properties of porous silicon, and no data are nowadays available on the mechanical properties of sintered porous silicon. In this work we propose a finite element model to estimate the mechanical properties of sintered meso-porous silicon. The model has been employed to study the dependence of the Young’s modulus and the shear modulus (upper and lower bounds) on the porosity for porosities between 0% to 40%. Interpolation functions for the Young’s modulus and shear modulus have been obtained, and the results show good agreement with the data reported for other porous media. A Monte Carlo simulation has also been employed to study the effect of the actual microstructure on the mechanical properties.

Concepts: Silicon, Materials science, Monte Carlo method, Porosity, Computer simulation, Young's modulus, Numerical analysis, Shear modulus