SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Mass

532

 To determine whether height and body mass index (BMI) have a causal role in five measures of socioeconomic status.

Concepts: Mass, Sociology, Industrial Revolution, Body mass index, United Kingdom, UK Biobank

521

The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity.

Concepts: Mathematics, Biology, Ecology, Obesity, Mass, Trophic level, Food chain, Biomass

352

Peoples' attempts to lose weight by low calorie diets often result in weight gain because of over-compensatory overeating during lapses. Animals usually respond to a change in food availability by adjusting their foraging effort and altering how much energy reserves they store. But in many situations the long-term availability of food is uncertain, so animals may attempt to estimate it to decide the appropriate level of fat storage.

Concepts: Nutrition, Energy, Physics, Obesity, Mass, Heat, Carbohydrate, Dieting

327

Crustaceans can exert a greater force using their claws than many animals can with other appendages. Furthermore, in decapods, the chela is a notable organ with multifunctional roles. The coconut crab, Birgus latro, is the largest terrestrial crustacean and has a remarkable ability to lift weights up to approximately 30 kg. However, the pinching force of this crab’s chelae has not been previously investigated. In the present study, we measured the pinching force of the chelae in 29 wild coconut crabs (33-2,120 g in body weight). The maximum force ranged from 29.4 to 1,765.2 N, and showed a strong positive correlation with body mass. Based on the correlation between pinching force and body weight, the force potentially exerted by the largest crab (4 kg weight) reported in a previous study would be 3300 N, which greatly exceeds the pinching force of other crustaceans as well as the bite force of most terrestrial predators. The mighty claw is a terrestrial adaptation that is not only a weapon, which can be used to prevent predator attack and inhibit competitors, but is also a tool to hunt other terrestrial organisms with rigid exteriors, aiding in these organisms to be omnivores.

Concepts: Mass, Crab, Decapoda, Coconut crab, Coenobitidae, Anomura, Caroline Island

325

Jointed exoskeletons permit rapid appendage-driven locomotion but retain the soft-bodied, shape-changing ability to explore confined environments. We challenged cockroaches with horizontal crevices smaller than a quarter of their standing body height. Cockroaches rapidly traversed crevices in 300-800 ms by compressing their body 40-60%. High-speed videography revealed crevice negotiation to be a complex, discontinuous maneuver. After traversing horizontal crevices to enter a vertically confined space, cockroaches crawled at velocities approaching 60 cm⋅s(-1), despite body compression and postural changes. Running velocity, stride length, and stride period only decreased at the smallest crevice height (4 mm), whereas slipping and the probability of zigzag paths increased. To explain confined-space running performance limits, we altered ceiling and ground friction. Increased ceiling friction decreased velocity by decreasing stride length and increasing slipping. Increased ground friction resulted in velocity and stride length attaining a maximum at intermediate friction levels. These data support a model of an unexplored mode of locomotion-“body-friction legged crawling” with body drag, friction-dominated leg thrust, but no media flow as in air, water, or sand. To define the limits of body compression in confined spaces, we conducted dynamic compressive cycle tests on living animals. Exoskeletal strength allowed cockroaches to withstand forces 300 times body weight when traversing the smallest crevices and up to nearly 900 times body weight without injury. Cockroach exoskeletons provided biological inspiration for the manufacture of an origami-style, soft, legged robot that can locomote rapidly in both open and confined spaces.

Concepts: Mass, Human height, Force, Space, Velocity, Height, Terrestrial locomotion, Crawling

284

 To conduct a systematic review and meta-analysis of cohort studies of body mass index (BMI) and the risk of all cause mortality, and to clarify the shape and the nadir of the dose-response curve, and the influence on the results of confounding from smoking, weight loss associated with disease, and preclinical disease.

Concepts: Medicine, Epidemiology, Death, Demography, Obesity, Actuarial science, Mass, Body mass index

272

Returning to the shore after a feeding sojourn at sea, king penguins often undertake a relatively long terrestrial journey to the breeding colony carrying a heavy, mostly frontal, accumulation of fat along with food in the stomach for chick-provisioning. There they must survive a fasting period of up to a month in duration, during which their complete reliance on endogenous energy stores results in a dramatic loss in body mass. Our aim was to determine if the king penguin’s walking gait changes with variations in body mass. We investigated this by walking king penguins on a treadmill while instrumented with an acceleration data logger. The stride frequency, dynamic body acceleration (DBA) and posture of fat (pre-fasting; 13.2 kg) and slim (post fasting; 11 kg) king penguins were assessed while they walked at the same speed (1.4km/h) on a treadmill. Paired statistical tests indicated no evidence for a difference in dynamic body acceleration or stride frequency between the two body masses however there was substantially less variability in both leaning angle and the leaning amplitude of the body when the birds were slimmer. Furthermore, there was some evidence that the slimmer birds exhibited a decrease in waddling amplitude. We suggest the increase in variability of both leaning angle and amplitude, as well as a possibly greater variability in the waddling amplitude, is likely to result from the frontal fat accumulation when the birds are heavier, which may move the centre of mass anteriorly, resulting in a less stable upright posture. This study is the first to use accelerometry to better understand the gait of a species within a specific ecological context: the considerable body mass change exhibited by king penguins.

Concepts: Mass, Bird, Classical mechanics, Penguin, Emperor Penguin, King Penguin, Walking, Penguins

264

Newborn telomere length sets telomere length for later life. At birth, telomere length is highly variable among newborns and the environmental factors during in utero life for this observation remain largely unidentified. Obesity during pregnancy might reflect an adverse nutritional status affecting pregnancy and offspring outcomes, but the association of maternal pre-pregnancy body mass index (BMI) with newborn telomere length, as a mechanism of maternal obesity, on the next generation has not been addressed.

Concepts: Childbirth, Infant, Nutrition, Obesity, Mass, Breastfeeding, Body mass index, Star Trek: The Next Generation

248

Background:Short sleep and weight gain are inversely related. Sleep deprivation acutely increases food intake but little is known about eating behavior in chronically sleep-deprived, obese individuals.Objective:To characterize the relationship between sleep, food intake and alcohol consumption under free-living conditions in obese, chronically sleep-deprived individuals.Design:Cross-sectional study of a cohort of obese men and premenopausal women.Subjects:A total of 118 obese subjects (age: 40.3±6.7 years; 91 females/27 males; body mass index 38.7±6.4 kg m(-2)).Measurements:Energy, macronutrient, alcohol and caffeine intake assessed by 3-day food records. Sleep duration estimated by actigraphy. Respiratory disturbance index assessed by a portable device.Results:Subjects slept 360.7±50.2 min per night and had a total energy intake of 2279.1±689 kcal per day. Sleep duration and energy intake were inversely related (r=-0.230, P=0.015). By extrapolation, each 30-min deficit per day in sleep duration would translate to an ∼83 kcal per day increase in energy intake. In addition, sleep apnea was associated with a shift from carbohydrate to fat intake. Alcohol intake in subjects consuming >3.5 g of alcohol per day (N=41) was inversely related to sleep duration (r=-0.472, P=0.002).Conclusions:Shorter sleep duration and obstructive sleep apnea are associated with higher energy, fat and alcohol intakes in obese individuals. The importance of this study relies on the population studied, obese subjects with chronic sleep deprivation. These novel findings apply to the large segment of the US population who are obese and sleep-deprived.

Concepts: Nutrition, Obesity, Mass, Sleep, Sleep deprivation, Body mass index, Sleep apnea, Obstructive sleep apnea

233

Leisure time physical activity reduces the risk of premature mortality, but the years of life expectancy gained at different levels remains unclear. Our objective was to determine the years of life gained after age 40 associated with various levels of physical activity, both overall and according to body mass index (BMI) groups, in a large pooled analysis.

Concepts: Death, Demography, Obesity, Actuarial science, Mass, Body mass index, Life expectancy, Personal life