Discover the most talked about and latest scientific content & concepts.

Concept: Mark Oliver Everett


In March 1800, Alexander von Humboldt observed the extraordinary spectacle of native fisherman collecting electric eels (Electrophorus electricus) by “fishing with horses” [von Humboldt A (1807) Ann Phys 25:34-43]. The strategy was to herd horses into a pool containing electric eels, provoking the eels to attack by pressing themselves against the horses while discharging. Once the eels were exhausted, they could be safely collected. This legendary tale of South American adventures helped propel Humboldt to fame and has been recounted and illustrated in many publications, but subsequent investigators have been skeptical, and no similar eel behavior has been reported in more than 200 years. Here I report a defensive eel behavior that supports Humboldt’s account. The behavior consists of an approach and leap out of the water during which the eel presses its chin against a threatening conductor while discharging high-voltage volleys. The effect is to short-circuit the electric organ through the threat, with increasing power diverted to the threat as the eel attains greater height during the leap. Measurement of voltages and current during the behavior, and assessment of the equivalent circuit, reveal the effectiveness of the behavior and the basis for its natural selection.

Concepts: Electricity, Fish, Eel, Electric eel, Electric fish, Alexander von Humboldt, Lisa Germano, Mark Oliver Everett


The presence of two phenotypes in a single species is a widespread phenomenon, also observed in European eel (Anguilla anguilla). This dimorphism has been related to dietary differences in the subadult elver and yellow eel stages, with broad-heads generally feeding on harder and/or larger-bodied prey items than narrow-heads. Nevertheless, both broad- and narrow-headed phenotypes can already be found among glass eels, the stage preceding the elver eel stage. As these glass eels are considered nonfeeding, we investigate here to what degree the observed variation in head width is reflected in variation in the musculoskeletal feeding system, as well as whether this reflects the same variation observed in the older, dimorphic yellow eels. Additionally, we investigate whether musculoskeletal differences between broad- and narrow-headed glass eels have implications on their feeding performance and could thus impact prey preference when eels start feeding. Therefore, we compared the cranial musculoskeletal system of five broad- and narrow-headed glass eels using 3D-reconstructions and simulated the glass eel’s bite force using the data of the muscle reconstructions. We found that the variation in the musculoskeletal system of glass eels indeed reflects that of the yellow eels. Broader heads were related to larger jaw muscles, responsible for mouth closure. Accordingly, broad-heads could generate higher bite forces than narrow-headed glass eels. In addition, broader heads were associated with higher coronoid processes and shorter hyomandibulae, beneficial for dealing with higher mechanical loadings and consequently, harder prey. We, thus, show that head width variation in glass eels is related to musculoskeletal differences which, in turn, can affect feeding performance. As such, differences in prey preference can already take place the moment the eels start feeding, potentially leading to the dimorphism observed in the elver and yellow eel stage.

Concepts: Eel, European eel, Eel life history, Jellied eels, Lisa Germano, Mark Oliver Everett


The Schlei fjord in northern Germany is the recipient water of a comprehensive eel, Anguilla anguilla (L.), stocking programme. Since 2015, stocked eels become alizarin red S marked, but to date no control mechanism is implemented in this stock enhancement measure to prevent anthropogenic spreading of diseases. Consequentially, it was possible that farmed stocking cohorts of 2015 and 2016 (in total ca. 1040 kg) were subsequently tested positive for anguillid herpesvirus 1 (AngHV 1). For this study, 100 eels [total length (TL) 24.3-72.9 cm, age ca. 1-6 years] were caught in 2016 and investigated with regard to AngHV 1 infection, parasite load (Anguillicoloides crassus) and body conditions. 68% of the eels were found to be virus positive while larger specimens were more often infected. In addition, a fitted generalized linear model (area under the curve = 0.741) demonstrated that an increase in individual TL is accompanied with an increased risk of clinically relevant virus loads. Anguillicoloides crassus turned out to be an important stressor for eels, because parasite and virus load revealed a significant positive correlation. The results of this study evidently show the urgent need of a disease containment strategy for eel stocking programmes.

Concepts: Infection, Real number, Eel, Anguillidae, European eel, Eel life history, Lisa Germano, Mark Oliver Everett


Overall recruitment of European glass eels (Anguilla anguilla) has decreased significantly since the early 1980s. Due to their long life cycle, benthic/demersal habits and high lipid content, eels might accumulate high concentrations of contaminants, but data concerning glass eels are still scarce. This study provides original data on methylmercury (MeHg) concentrations in glass eels at spatial (marine and estuarine), annual and seasonal scales. The relationship between MeHg concentrations in glass eels and their propensity to migrate up estuaries was also investigated. MeHg data were individually related to the eels' energetic condition which was estimated by dry weight. Glass eel migratory behaviour was investigated in an experimental flume and related to the MeHg concentration and dry weight at the individual scale. Marine and estuarine glass eels were caught from 2004 to 2011. There was a strong inverse correlation between MeHg concentrations and dry weight. MeHg concentrations increased in marine and estuarine glass eels from 2004 to 2009 and from 2004 to 2010, respectively, and then, both groups decreased in 2011. On a seasonal time scale, MeHg concentrations were higher at the end of the fishing season (April). MeHg bioaccumulation is likely to result from different sources, but the lack of significant differences between marine and estuarine glass eels suggests that direct contamination during estuarine migration is low. Other sources such as maternal transfer or oceanic contamination are discussed.

Concepts: Estuary, Eel, Coastal and Estuarine Research Federation, Chesapeake Bay, European eel, Eel life history, Lisa Germano, Mark Oliver Everett


The nematodes Anguillicola novaezelandiae and Anguillicola crassus are both alien parasites of the European eel with severe adverse effects on their new host. Both species differ in terms of their invasiveness and their severity of harmful effects on the European eel. The purpose of this study was to determine under laboratory conditions whether stages of A. novaezelandiae induce stress in European eels (Anguilla anguilla) and if these levels differ from stress levels induced by A. crassus. We analysed levels of plasma cortisol and hepatic hsp70 of eels experimentally infected with A. novaezelandiae and compared them to uninfected eels as well as to eels experimentally infected with A. crassus. Larval stages of A. novaezelandiae induced higher levels of plasma cortisol compared to uninfected controls, while adult parasites increased the levels of hepatic hsp70 above those of uninfected controls. The eels' cortisol response is induced by larval stages of A. novaezelandiae, while adult stages elevate levels of hepatic hsp70. Levels of stress induced by A. novaezelandiae are comparable to those induced by A. crassus.

Concepts: Eel, European eel, Eel life history, Lisa Germano, Anguillicola crassus, Mark Oliver Everett