Discover the most talked about and latest scientific content & concepts.

Concept: Marburg virus


In 1967, a woman became ill after exposure to a newly discovered pathogen that we now call Marburg virus, a member of the family Filoviridae (filoviruses), to which Ebola virus also belongs.(1) Testing of the semen of her husband, who had recovered from the disease 6 weeks previously, determined that her exposure was through sexual intercourse. This was the first confirmed case of sexual transmission of filovirus disease from a convalescent man. It was also the last…until recently. In March 2015, Ebola virus disease (EVD) developed in a Liberian woman after the country had been free from EVD for 30 . . .

Concepts: Microbiology, Ebola, Marburg virus, Mononegavirales, Viral hemorrhagic fever, Incubation period, Filoviridae, Hemorrhagic fevers


The 2013-15 Ebola outbreak was unprecedented due to sustained transmission within urban environments and thousands of survivors. In 2014 the World Health Organization stated that there was insufficient evidence to give definitive guidance about which body fluids are infectious and when they pose a risk to humans. We report a rapid systematic review of published evidence on the presence of filoviruses in body fluids of infected people and survivors.

Concepts: Infection, Pandemic, World Health Organization, Ebola, Marburg virus, Mononegavirales, Viral hemorrhagic fever, Filoviridae


Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature.

Concepts: DNA, Protein, Genetics, Natural selection, Evolution, Virus, Marburg virus, Mononegavirales


In March 2014, the World Health Organization was notified of an outbreak of a communicable disease characterized by fever, severe diarrhea, vomiting, and a high fatality rate in Guinea. Virologic investigation identified Zaire ebolavirus (EBOV) as the causative agent. Full-length genome sequencing and phylogenetic analysis showed that EBOV from Guinea forms a separate clade in relationship to the known EBOV strains from the Democratic Republic of Congo and Gabon. Epidemiologic investigation linked the laboratory-confirmed cases with the presumed first fatality of the outbreak in December 2013. This study demonstrates the emergence of a new EBOV strain in Guinea.

Concepts: Epidemiology, Microbiology, Democratic Republic of the Congo, Ebola, Marburg virus, Viral hemorrhagic fever, Incubation period, Crab-eating Macaque


Ebola virus disease (EVD) is a contagious, severe and often lethal form of hemorrhagic fever in humans. The association of EVD outbreaks with forest clearance has been suggested previously but many aspects remained uncharacterized. We used remote sensing techniques to investigate the association between deforestation in time and space, with EVD outbreaks in Central and West Africa. Favorability modeling, centered on 27 EVD outbreak sites and 280 comparable control sites, revealed that outbreaks located along the limits of the rainforest biome were significantly associated with forest losses within the previous 2 years. This association was strongest for closed forests (>83%), both intact and disturbed, of a range of tree heights (5->19 m). Our results suggest that the increased probability of an EVD outbreak occurring in a site is linked to recent deforestation events, and that preventing the loss of forests could reduce the likelihood of future outbreaks.

Concepts: Forest, Biological warfare, Rainforest, Tropical rainforest, Ebola, Marburg virus, Viral hemorrhagic fever, Incubation period


Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.

Concepts: Immune system, Antibody, Bacteria, Microbiology, Ebola, Marburg virus, Viral hemorrhagic fever, Filoviridae


As the outbreak of Ebola virus disease (EVD) in West Africa is now contained, attention is turning from control to future outbreak prediction and prevention. Building on a previously published zoonotic niche map (Pigott et al., 2014), this study incorporates new human and animal occurrence data and expands upon the way in which potential bat EVD reservoir species are incorporated. This update demonstrates the potential for incorporating and updating data used to generate the predicted suitability map. A new data portal for sharing such maps is discussed. This output represents the most up-to-date estimate of the extent of EVD zoonotic risk in Africa. These maps can assist in strengthening surveillance and response capacity to contain viral haemorrhagic fevers.

Concepts: Malaria, Africa, Biological warfare, Ebola, Marburg virus, Viral hemorrhagic fever, Incubation period, Windows Update


Recent work demonstrated that the Niemann-Pick C1 (NPC1) protein is an essential entry receptor for filoviruses. While previous studies focused on filovirus entry requirements of NPC1 in vitro, its roles in filovirus replication and pathogenesis in vivo remain unclear. Here, we evaluated the importance of NPC1, and its partner in cholesterol transport, NPC2, by using a mouse model of Ebolavirus (EBOV) disease. We found that, whereas wild-type mice had high viral loads and succumbed to EBOV infection, Npc1(-/-) mice were entirely free of viral replication and completely protected from EBOV disease. Interestingly, Npc1(+/-) mice transiently developed high levels of viremia, but were nevertheless substantially protected from EBOV challenge. We also found Npc2(-/-) mice to be fully susceptible to EBOV infection, while Npc1(-/-) mice treated to deplete stored lysosomal cholesterol remained completely resistant to EBOV infection. These results provide mechanistic evidence that NPC1 is directly required for EBOV infection in vivo, with little or no role for NPC1/NPC2-dependent cholesterol transport. Finally, we assessed the in vivo antiviral efficacies of three compounds known to inhibit NPC1 function or NPC1-glycoprotein binding in vitro. Two compounds reduced viral titers in vivo and provided a modest, albeit not statistically significant, degree of protection. Taken together, our results show that NPC1 is critical for replication and pathogenesis in animals and is a bona fide target for development of antifilovirus therapeutics. Additionally, our findings with Npc1(+/-) mice raise the possibility that individuals heterozygous for NPC1 may have a survival advantage in the face of EBOV infection.

Concepts: Cholesterol, Immune system, Gene, Virus, In vivo, In vitro, Marburg virus, Mononegavirales


Ebola virus causes a severe haemorrhagic fever in humans with high case fatality and significant epidemic potential. The 2013-2016 outbreak in West Africa was unprecedented in scale, being larger than all previous outbreaks combined, with 28 646 reported cases and 11 323 reported deaths. It was also unique in its geographical distribution and multicountry spread. It is vital that the lessons learned from the world’s largest Ebola outbreak are not lost. This article aims to provide a detailed description of the evolution of the outbreak. We contextualize this outbreak in relation to previous Ebola outbreaks and outline the theories regarding its origins and emergence. The outbreak is described by country, in chronological order, including epidemiological parameters and implementation of outbreak containment strategies. We then summarize the factors that led to rapid and extensive propagation, as well as highlight the key successes, failures and lessons learned from this outbreak and the response.This article is part of the themed issue ‘The 2013-2016 West African Ebola epidemic: data, decision-making and disease control’.

Concepts: Epidemiology, Infectious disease, Africa, Ebola, Marburg virus, Epidemic, Viral hemorrhagic fever, Outbreak


The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

Concepts: Infectious disease, Virus, Infection, Fever, Ebola, Marburg virus, Viral hemorrhagic fever, Malaise