Discover the most talked about and latest scientific content & concepts.

Concept: Manufacturing


Lean is a widely used quality improvement methodology initially developed and used in the automotive and manufacturing industries but recently expanded to the healthcare sector. This systematic literature review seeks to independently assess the effect of Lean or Lean interventions on worker and patient satisfaction, health and process outcomes, and financial costs.

Concepts: Illness, ISO 9000, Health care provider, Evaluation, Lean manufacturing, Industry, Six Sigma, Manufacturing


New Caledonian crows are renowned for their unusually sophisticated tool behaviour. Despite decades of fieldwork, however, very little is known about how they make and use their foraging tools in the wild, which is largely owing to the difficulties in observing these shy forest birds. To obtain first estimates of activity budgets, as well as close-up observations of tool-assisted foraging, we equipped 19 wild crows with self-developed miniature video cameras, yielding more than 10 h of analysable video footage for 10 subjects. While only four crows used tools during recording sessions, they did so extensively: across all 10 birds, we conservatively estimate that tool-related behaviour occurred in 3% of total observation time, and accounted for 19% of all foraging behaviour. Our video-loggers provided first footage of crows manufacturing, and using, one of their most complex tool types-hooked stick tools-under completely natural foraging conditions. We recorded manufacture from live branches of paperbark (Melaleuca sp.) and another tree species (thought to be Acacia spirorbis), and deployment of tools in a range of contexts, including on the forest floor. Taken together, our video recordings reveal an ‘expanded’ foraging niche for hooked stick tools, and highlight more generally how crows routinely switch between tool- and bill-assisted foraging.

Concepts: Media technology, Hypothesis, Tool, Scientific method, Camera, Manufacturing, Observation, Recording


Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a “dead zone” (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.

Concepts: Object, Units of length, Rapid manufacturing, Printing, Manufacturing, Orders of magnitude


Shamanic belief systems represent the first form of religious practice visible within the global archaeological record. Here we report on the earliest known evidence of shamanic costume: modified red deer crania headdresses from the Early Holocene site of Star Carr (c. 11 kya). More than 90% of the examples from prehistoric Europe come from this one site, establishing it as a place of outstanding shamanistic/cosmological significance. Our work, involving a programme of experimental replication, analysis of macroscopic traces, organic residue analysis and 3D image acquisition, metrology and visualisation, represents the first attempt to understand the manufacturing processes used to create these artefacts. The results produced were unexpected-rather than being carefully crafted objects, elements of their production can only be described as expedient.

Concepts: Manufacturing, Archaeological site, Faith, Holocene, Mesolithic, Archaeology, Religion, Prehistory


In 2015, an estimated 18.4 million U.S. adults had current asthma, and 3,396 adult asthma deaths were reported (1). An estimated 11%-21% of asthma deaths might be attributable to occupational exposures (2). To describe asthma mortality among persons aged 15-64 years,* CDC analyzed multiple cause-of-death data† for 1999-2016 and industry and occupation information collected from 26 states§ for the years 1999, 2003, 2004, and 2007-2012. Proportionate mortality ratios (PMRs)¶ for asthma among persons aged 15-64 years were calculated. During 1999-2016, a total of 14,296 (42.9%) asthma deaths occurred among males and 19,011 (57.1%) occurred among females. Based on an estimate that 11%-21% of asthma deaths might be related to occupational exposures, during this 18-year period, 1,573-3,002 asthma deaths in males and 2,091-3,992 deaths in females might have resulted from occupational exposures. Some of these deaths might have been averted by instituting measures to prevent potential workplace exposures. The annual age-adjusted asthma death rate** per 1 million persons aged 15-64 years declined from 13.59 in 1999 to 9.34 in 2016 (p<0.001) among females, and from 9.14 (1999) to 7.78 (2016) (p<0.05) among males. The highest significantly elevated asthma PMRs for males were for those in the food, beverage, and tobacco products manufacturing industry (1.82) and for females were for those in the social assistance industry (1.35) and those in community and social services occupations (1.46). Elevated asthma mortality among workers in certain industries and occupations underscores the importance of optimal asthma management and identification and prevention of potential workplace exposures.

Concepts: Demography, Estimation, Million, Gerontology, Senescence, Manufacturing, Industry, Death


Synthetic biology uses living cells as molecular foundries for the biosynthesis of drugs, therapeutic proteins, and other commodities. However, the need for specialized equipment and refrigeration for production and distribution poses a challenge for the delivery of these technologies to the field and to low-resource areas. Here, we present a portable platform that provides the means for on-site, on-demand manufacturing of therapeutics and biomolecules. This flexible system is based on reaction pellets composed of freeze-dried, cell-free transcription and translation machinery, which can be easily hydrated and utilized for biosynthesis through the addition of DNA encoding the desired output. We demonstrate this approach with the manufacture and functional validation of antimicrobial peptides and vaccines and present combinatorial methods for the production of antibody conjugates and small molecules. This synthetic biology platform resolves important practical limitations in the production and distribution of therapeutics and molecular tools, both to the developed and developing world.

Concepts: Molecule, Biomolecule, Manufacturing, Gene, Organism, Molecular biology, Protein, DNA


Manufacturing processes for biological molecules in the research laboratory have failed to keep pace with the rapid advances in automization and parellelization. We report the development of a digital-to-biological converter for fully automated, versatile and demand-based production of functional biologics starting from DNA sequence information. Specifically, DNA templates, RNA molecules, proteins and viral particles were produced in an automated fashion from digitally transmitted DNA sequences without human intervention.

Concepts: Genetics, DNA sequencing, Manufacturing, DNA sequence, RNA, Molecular biology, Gene, DNA


Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured.

Concepts: Infancy, Manufacturing, Estimator, Science, St. John's, Newfoundland and Labrador, Metabolism, Research and development, Hydrogen


Stem cell production systems need elaborate monitoring and control for meeting requirements on the final cell product. In this article, the use of biomechatronic design methodology for supporting these efforts is described. Biomechatronic design, which is based on a fundamental systematical design approach originating from mechanical engineering, is here applied for investigating how monitoring and control systems can be configured in stem cell manufacturing processes. Results are provided that demonstrate how the biomechatronic design tools are used to compare different process analytical instrumentation resulting in a design layout for the monitoring system for derivation of hepatocytes from human embryonic stem cells. The results can be extrapolated to other stem cell production processes using the same methodology.

Concepts: Cell division, Manufacturing, Mechatronics, Mechanical engineering, Engineering, Design, Stem cell, Embryonic stem cell


BACKGROUND: Additive manufacturing (AM) is being increasingly used for producing medical models. The accuracy of these models varies between different materials, AM technologies and machine runs. PURPOSE: To determine the accuracy of selective laser sintering (SLS), three-dimensional printing (3DP) and PolyJet technologies in the production of medical models. MATERIAL: 3D skull models: “original”, “moderate” and “worse”. SLS, 3DP and PolyJet models, and a coordinate measuring machine (CMM). METHODS: Measuring balls designed for measurements were attached to each 3D model. Skull models were manufactured using SLS, 3DP and PolyJet. The midpoints of the balls were determined using CMM. The distances between these points were calculated and compared with the 3D model. RESULTS: The dimensional error for the PolyJet was 0.18 ± 0.12% (first measurement) and 0.18 ± 0.13% (second measurement), for SLS 0.79 ± 0.26% (first model) and 0.80 ± 0.32% (second model), and for 3DP 0.67 ± 0.43% (original model, first measurement) and 0.69 ± 0.44% (original model, second measurement), 0.38 ± 0.22% (moderate model) and 0.55 ± 0.37% (worse model). Repeatability of the measurement method was 0.12% for the PolyJet and 0.08% for the 3DP. CONCLUSION: A novel measuring technique was developed and its repeatability was found to be good. The accuracy of the PolyJet was higher when compared with SLS or 3DP.

Concepts: Rapid prototyping, Additive manufacturing, Fused deposition modeling, Measurement, 3D printing, Manufacturing, Rapid manufacturing, Selective laser sintering