SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Maniraptora

412

Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

Concepts: Bird, Reptile, Fossil, Dinosaur, Saurischia, Theropoda, Maniraptora, Avialae

247

The Jurassic Yanliao theropods have offered rare glimpses of the early paravian evolution and particularly of bird origins, but, with the exception of the bizarre scansoriopterygids, they have shown similar skeletal and integumentary morphologies. Here we report a distinctive new Yanliao theropod species bearing prominent lacrimal crests, bony ornaments previously known from more basal theropods. It shows longer arm and leg feathers than Anchiornis and tail feathers with asymmetrical vanes forming a tail surface area even larger than that in Archaeopteryx. Nanostructures, interpreted as melanosomes, are morphologically similar to organized, platelet-shaped organelles that produce bright iridescent colours in extant birds. The new species indicates the presence of bony ornaments, feather colour and flight-related features consistent with proposed rapid character evolution and significant diversity in signalling and locomotor strategies near bird origins.

Concepts: Bird, Dinosaur, Feathered dinosaurs, Archaeopteryx, Theropoda, Dromaeosauridae, Troodontidae, Maniraptora

239

Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised-head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction.

Concepts: Skull, Cretaceous, Dinosaur, Saurischia, Theropoda, Maniraptora, Oviraptorosauria, Oviraptoridae

84

Archaeopteryx is an iconic fossil that has long been pivotal for our understanding of the origin of birds. Remains of this important taxon have only been found in the Late Jurassic lithographic limestones of Bavaria, Germany. Twelve skeletal specimens are reported so far. Archaeopteryx was long the only pre-Cretaceous paravian theropod known, but recent discoveries from the Tiaojishan Formation, China, yielded a remarkable diversity of this clade, including the possibly oldest and most basal known clade of avialan, here named Anchiornithidae. However, Archaeopteryx remains the only Jurassic paravian theropod based on diagnostic material reported outside China.

Concepts: Bird, Dinosaur, Archaeopteryx, Theropoda, Dromaeosauridae, Maniraptora, Jurassic, Avialae

64

A monodominant bonebed of Avimimus from the Nemegt Formation of Mongolia is the first oviraptorosaur bonebed described and the only recorded maniraptoran bonebed from the Late Cretaceous. Cranial elements recovered from the bonebed provide insights on the anatomy of the facial region, which was formerly unknown in Avimimus. Both adult and subadult material was recovered from the bonebed, but small juveniles are underrepresented. The taphonomic and sedimentological evidence suggests that the Avimimus bonebed represents a perimortem gregarious assemblage. The near absence of juveniles in the bonebed may be evidence of a transient age-segregated herd or ‘flock’, but the behaviour responsible for this assemblage is unclear. Regardless, the Avimimus bonebed is the first evidence of gregarious behaviour in oviraptorosaurs, and highlights a potential trend of increasing gregariousness in dinosaurs towards the end of the Mesozoic.

Concepts: Bird, Reptile, Cretaceous, Dinosaur, Saurischia, Theropoda, Maniraptora, Oviraptorosauria

61

The wings of birds and their closest theropod relatives share a uniform fundamental architecture, with pinnate flight feathers as the key component. Here we report a new scansoriopterygid theropod, Yi qi gen. et sp. nov., based on a new specimen from the Middle-Upper Jurassic period Tiaojishan Formation of Hebei Province, China. Yi is nested phylogenetically among winged theropods but has large stiff filamentous feathers of an unusual type on both the forelimb and hindlimb. However, the filamentous feathers of Yi resemble pinnate feathers in bearing morphologically diverse melanosomes. Most surprisingly, Yi has a long rod-like bone extending from each wrist, and patches of membranous tissue preserved between the rod-like bones and the manual digits. Analogous features are unknown in any dinosaur but occur in various flying and gliding tetrapods, suggesting the intriguing possibility that Yi had membranous aerodynamic surfaces totally different from the archetypal feathered wings of birds and their closest relatives. Documentation of the unique forelimbs of Yi greatly increases the morphological disparity known to exist among dinosaurs, and highlights the extraordinary breadth and richness of the evolutionary experimentation that took place close to the origin of birds.

Concepts: Bird, Reptile, Dinosaur, Archaeopteryx, Wing, Theropoda, Coelurosauria, Maniraptora

57

Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.

Concepts: Bird, Dinosaur, Saurischia, Archaeopteryx, Theropoda, Coelurosauria, Dromaeosauridae, Maniraptora

57

The oviraptorosaurian theropod dinosaur clade Caenagnathidae has long been enigmatic due to the incomplete nature of nearly all described fossils. Here we describe Anzu wyliei gen. et sp. nov., a new taxon of large-bodied caenagnathid based primarily on three well-preserved partial skeletons. The specimens were recovered from the uppermost Cretaceous (upper Maastrichtian) Hell Creek Formation of North and South Dakota, and are therefore among the stratigraphically youngest known oviraptorosaurian remains. Collectively, the fossils include elements from most regions of the skeleton, providing a wealth of information on the osteology and evolutionary relationships of Caenagnathidae. Phylogenetic analysis reaffirms caenagnathid monophyly, and indicates that Anzu is most closely related to Caenagnathus collinsi, a taxon that is definitively known only from a mandible from the Campanian Dinosaur Park Formation of Alberta. The problematic oviraptorosaurs Microvenator and Gigantoraptor are recovered as basal caenagnathids, as has previously been suggested. Anzu and other caenagnathids may have favored well-watered floodplain settings over channel margins, and were probably ecological generalists that fed upon vegetation, small animals, and perhaps eggs.

Concepts: Bird, Dinosaur, Theropoda, Maniraptora, Tyrannosaurus, Oviraptorosauria, Chirostenotes, Caenagnathidae

47

Most birds have an opposable digit 1 (hallux) allowing the foot to grasp, which evolved from the non-opposable hallux of early theropod dinosaurs. An important morphological difference with early theropods is the twisting of the long axis of its metatarsal. Here, we show how embryonic musculature and the onset of its activity are required for twisting of metatarsal 1 (Mt1) and retroversion of the hallux. Pharmacologically paralyzed embryos do not fully retrovert the hallux and have a straight Mt1 shaft, phenocopying the morphology of early tetanuran dinosaurs. Molecular markers of cartilage maturation and ossification show that differentiation of Mt1 is significantly delayed compared to Mt2-4. We hypothesize on how delayed maturation may have increased plasticity, facilitating muscular twisting. Our experimental results emphasize the importance of embryonic muscular activity in the evolutionary origin of a crucial adaptation.

Concepts: Evolution, Foot, Bird, Reptile, Dinosaur, Saurischia, Theropoda, Maniraptora

46

Our understanding of coelurosaurian evolution, particularly of bird origins, has been greatly improved, mainly due to numerous recently discovered fossils worldwide. Nearly all these discoveries are referable to the previously known coelurosaurian subgroups. Here, we report a new theropod, Fukuivenator paradoxus, gen. et sp. nov., based on a nearly complete specimen from the Lower Cretaceous Kitadani Formation of the Tetori Group, Fukui, Japan. While Fukuivenator possesses a large number of morphological features unknown in any other theropod, it has a combination of primitive and derived features seen in different theropod subgroups, notably dromaeosaurid dinosaurs. Computed-tomography data indicate that Fukuivenator possesses inner ears whose morphology is intermediate between those of birds and non-avian dinosaurs. Our phylogenetic analysis recovers Fukuivenator as a basally branching maniraptoran theropod, yet is unable to refer it to any known coelurosaurian subgroups. The discovery of Fukuivenator considerably increases the morphological disparity of coelurosaurian dinosaurs and highlights the high levels of homoplasy in coelurosaurian evolution.

Concepts: Bird, Cretaceous, Dinosaur, Theropoda, Coelurosauria, Psittacosaurus, Maniraptora, Early Cretaceous