Discover the most talked about and latest scientific content & concepts.

Concept: Mandible


Razanandrongobe sakalavae Maganuco, Dal Sasso & Pasini, 2006 is a large predatory archosaur from the Middle Jurassic (Bathonian) of the Mahajanga Basin, NW Madagascar. It was diagnosed on the basis of teeth and a fragmentary maxilla, but its affinities were uncertain. Here we describe new cranial remains (above all, an almost complete right premaxilla and a caudally incomplete left dentary) that greatly improve our knowledge on this enigmatic species and reveal its anatomy to be crocodylomorph. The right premaxilla indicates that the rostrum was deep, wide, and not pointed; it bears five teeth that are sub-vertical and just slightly curved lingually; the mesial teeth are U-shaped in cross-section and have serrated carinae on the lingual side; the aperturae nasi osseae (external bony nares) are confluent and face rostrally; and there is no lateral groove at the premaxillomaxillary suture for reception of a hypertrophied lower caniniform tooth. The preserved portion of the left dentary has an edentulous tip and bears eight large mandibular teeth of which the mesial (1-3) are the largest, but none is a hypertrophied caniniform tooth; the mandibular (dentary) symphysis extends caudally to the level of the third tooth; the splenial is not preserved, but its sutural marks on the dentary indicate that it contributed to the mandibular symphysis for at least 20% of the symphyseal length in dorsal aspect. On the basis of this new data, some previously uncertain features of the holotype maxilla-such as the margin of the suborbital fenestra, the contact surfaces for the palatine, the ectopterygoid, and the jugal-are now apparent. Testing of the phylogenetic position of the species within Crocodylomorpha indicates that R. sakalavae is a mesoeucrocodylian. It also represents one of the earliest events of exacerbated increase in body size along the evolutionary history of the group. In addition, it is by far the oldest notosuchian. A cranial reconstruction of this gigantic predator is also attempted here. The very robust jaw bones of R. sakalavae, coupled with its peculiar dentition, strongly suggest a diet that included hard tissue such as bone and tendon.

Concepts: Left-wing politics, Mandible, Teeth, Animal anatomy, Jaw, Maxilla, Symphysis menti, Symphysis


The aim of this study was to quantify anteroposterior facial soft tissue changes with respect to underlying skeletal movements after Le Fort I maxillary advancement and mandibular setback surgery with sagittal split osteotomy in Class III skeletal deformity by using lateral cephalograms taken before and after the operation. The material consisted of 31 patient (15 female, 16 male cases, mean age was 26.7 ± 2.5 years) with Class III skeletal deformity. All patients were treated by Le Fort I maxillary advancement and mandibular setback surgery with sagittal split osteotomy. Lateral cephalograms were taken before and 1.4 ± 0.3 years after surgery. Wilcoxon test was used to compare the pre- and post-surgical measurements. Pearson correlation test was used to compare the relationships between the skeletal, dental and facial soft tissue changes. In the maxilla, the APOINTAP (the anteroposterior position of A point) and ITIPAP (the anteroposterior position of upper incisor) showed significant protractions (-3.19 ± 3.63, and -3.19 ± 4.52, p < 0.01). In the mandible, the L1TIPAP (the anteroposterior position of lower incisor, -3.20 ± 5.83, p < 0.01), L1TIPSI (the superoinferior position of lower incisor, -2.43 ± 10.31, p < 0.05), BPOINTSP (the superoinferior position of B point, -2.28 ± 12.51, p < 0.05) and BPOINTAP (the anteroposterior position of B point, -3.19 ± 9.31, p < 0.01) showed significant retractions and upper positions after bimaxillary surgery. The insignificant decrease in soft tissue Pog-Vert distance was correlated the significant upper position of B point and lower incisor (r: 0.851, p < 0.001 and r: 0.842, p < 0.001).

Concepts: Spearman's rank correlation coefficient, Mandible, Tissues, Correlation and dependence, Pearson product-moment correlation coefficient, Soft tissue, Karl Pearson, Maxilla


BACKGROUND: In the last years, several methods and devices have been proposed to record the human mandibular movements, since they provide quantitative parameters that support the diagnosis and treatment of temporomandibular disorders. The techniques currently employed suffer from a number of drawbacks including high price, unnatural to use, lack of support for real-time analysis and mandibular movements recording as a pure rotation. In this paper, we propose a specialized optical motion capture system, which causes a minimum obstruction and can support 3D mandibular movement analysis in real-time. METHODS: We used three infrared cameras together with nine reflective markers that were placed at key points of the face. Some classical techniques are suggested to conduct the camera calibration and three-dimensional reconstruction and we propose some specialized algorithms to automatically recognize our set of markers and track them along a motion capture session. RESULTS: To test the system, we developed a prototype software and performed a clinical experiment in a group of 22 subjects. They were instructed to execute several movements for the functional evaluation of the mandible while the system was employed to record them. The acquired parameters and the reconstructed trajectories were used to confirm the typical function of temporomandibular joint in some subjects and to highlight its abnormal behavior in others. CONCLUSIONS: The proposed system is an alternative to the existing optical, mechanical, electromagnetic and ultrasonic-based methods, and intends to address some drawbacks of currently available solutions. Its main goal is to assist specialists in diagnostic and treatment of temporomandibular disorders, since simple visual inspection may not be sufficient for a precise assessment of temporomandibular joint and associated muscles.

Concepts: Mandible, Joint, Motion capture, Temporomandibular joint, Temporomandibular joint disorder, Camera, Masseteric nerve


Central odontogenic fibroma (COF) is a rare benign tumor that accounts for 0.1% of all odontogenic tumors. A case of COF (simple type) of the mandible in a four-year-old boy is described in this report. The patient showed asymptomatic swelling in the right inferior border of the lower jaw for one week. A panoramic radiograph showed a poorly-defined destructive unilocular radiolucent area. Cone-beam computed tomography showed expansion and perforation of the adjacent cortical bone plates. A periosteal reaction with the Codman triangle pattern was clearly visible in the buccal cortex. Since the tumor had destroyed a considerable amount of bone, surgical resection was performed. No recurrence was noted.

Concepts: Bone, Oncology, Mandible, Tomographic reconstruction, Benign tumor, Tumor, Temporomandibular joint, Jaw


In the present report, we describe the successful use of miniscrews to achieve vertical control in combination with the conventional sliding MBT™ straight-wire technique for the treatment of a 26-year-old Chinese woman with a very high mandibular plane angle, deep overbite, retrognathic mandible with backward rotation, prognathic maxilla, and gummy smile. The patient exhibited skeletal Class II malocclusion. Orthodontic miniscrews were placed in the maxillary anterior and posterior segments to provide rigid anchorage and vertical control through intrusion of the incisors and molars. Intrusion and torque control of the maxillary incisors relieved the deep overbite and corrected the gummy smile, while intrusion of the maxillary molars aided in counterclockwise rotation of the mandibular plane, which consequently resulted in an improved facial profile. After 3.5 years of retention, we observed a stable, well-aligned dentition with ideal intercuspation and more harmonious facial contours. Thus, we were able to achieve a satisfactory occlusion, a significantly improved facial profile, and an attractive smile for this patient. The findings from this case suggest that nonsurgical correction using miniscrew anchorage is an effective approach for camouflage treatment of high-angle cases with skeletal Class II malocclusion.

Concepts: Torque, Mandible, Horse, Teeth, Malocclusion, Orthodontics, Maxilla, Prognathism


Early increased sophistication of human tools is thought to be underpinned by adaptive morphology for efficient tool manipulation. Such adaptive specialisation is unknown in nonhuman primates but may have evolved in the New Caledonian crow, which has sophisticated tool manufacture. The straightness of its bill, for example, may be adaptive for enhanced visually-directed use of tools. Here, we examine in detail the shape and internal structure of the New Caledonian crow’s bill using Principal Components Analysis and Computed Tomography within a comparative framework. We found that the bill has a combination of interrelated shape and structural features unique within Corvus, and possibly birds generally. The upper mandible is relatively deep and short with a straight cutting edge, and the lower mandible is strengthened and upturned. These novel combined attributes would be functional for (i) counteracting the unique loading patterns acting on the bill when manipulating tools, (ii) a strong precision grip to hold tools securely, and (iii) enhanced visually-guided tool use. Our findings indicate that the New Caledonian crow’s innovative bill has been adapted for tool manipulation to at least some degree. Early increased sophistication of tools may require the co-evolution of morphology that provides improved manipulatory skills.

Concepts: Mandible, Primate, Tool, Corvidae, Crow, Corvus, New Caledonian Crow, Tool-using species


A pterosaur bone bed with at least 47 individuals (wing spans: 0.65-2.35 m) of a new species is reported from southern Brazil from an interdunal lake deposit of a Cretaceous desert, shedding new light on several biological aspects of those flying reptiles. The material represents a new pterosaur, Caiuajara dobruskii gen. et sp. nov., that is the southermost occurrence of the edentulous clade Tapejaridae (Tapejarinae, Pterodactyloidea) recovered so far. Caiuajara dobruskii differs from all other members of this clade in several cranial features, including the presence of a ventral sagittal bony expansion projected inside the nasoantorbital fenestra, which is formed by the premaxillae; and features of the lower jaw, like a marked rounded depression in the occlusal concavity of the dentary. Ontogenetic variation of Caiuajara dobruskii is mainly reflected in the size and inclination of the premaxillary crest, changing from small and inclined (∼115°) in juveniles to large and steep (∼90°) in adults. No particular ontogenetic features are observed in postcranial elements. The available information suggests that this species was gregarious, living in colonies, and most likely precocial, being able to fly at a very young age, which might have been a general trend for at least derived pterosaurs.

Concepts: Mandible, Reptile, Mammal, Cretaceous, Pterosaur, Pterodactyloidea, Tapejaridae, Jaw


We report a new, small-sized atoposaurid crocodyliform from the Upper Jurassic of Langenberg, Northeastern Germany. Atoposaurids are small-sized Mesozoic crocodyliforms of mainly European distribution, which are considered to be phylogenetically close to the origin of Eusuchia. Knoetschkesuchus langenbergensis gen. nov. sp. nov. is represented by two well-preserved skulls and additional cranial and postcranial remains representing different ontogenetic stages. 3D reconstructions of a juvenile skull based on micro-computed tomography allow the most detailed description of cranial remains of any atoposaurid hitherto presented. Our new analysis contradicts previous preliminary assignment of the Langenberg atoposaurids to Theriosuchus. Knoetschkesuchus gen. nov. is characterized in particular by the presence of two dental morphotypes in the maxilla and dentary, slit-like secondary choanae within a narrow groove on the surface of the pterygoid, absence of lacrimonasal contact, presence of an antorbital foramen and an external mandibular fenestra, and proportional characters of the interorbital and intertemporal region. A similar combination of characters allows attribution of Theriosuchus guimarotae to Knoetschkesuchus, forming the new combination Knoetschkesuchus guimarotae. Our analysis provides an osteological basis for the separation of Theriosuchus and Knoetschkesuchus and helps further delineate generic differences in other closely related crocodylomorphs. Our phylogenetic analysis corroborates inclusion of Knoetschkesuchus into Atoposauridae and supports a position of Atoposauridae within Eusuchia.

Concepts: Mandible, Skull, Computational phylogenetics, Germany, Saxony, Jurassic, Crocodylomorpha, Crocodyliformes


Knowing the functionality and capabilities of masticatory apparatuses is essential for the ecological classification of jawed organisms. Nevertheless insects, especially with their outstanding high species number providing an overwhelming morphological diversity, are notoriously underexplored with respect to maximum bite forces and their dependency on the mandible opening angles. Aiming for a general understanding of insect biting, we examined the generalist feeding cockroach Periplaneta americana, characterized by its primitive chewing mouth parts. We measured active isometric bite forces and passive forces caused by joint resistance over the entire mandibular range with a custom-built 2D force transducer. The opening angle of the mandibles was quantified by using a video system. With respect to the effective mechanical advantage of the mandibles and the cross-section areas, we calculated the forces exerted by the mandible closer muscles and the corresponding muscle stress values. Comparisons with the scarce data available revealed close similarities of the cockroaches' mandible closer stress values (58 N/cm2) to that of smaller specialist carnivorous ground beetles, but strikingly higher values than in larger stag beetles. In contrast to available datasets our results imply the activity of faster and slower muscle fibres, with the latter becoming active only when the animals chew on tough material which requires repetitive, hard biting. Under such circumstances the coactivity of fast and slow fibres provides a force boost which is not available during short-term activities, since long latencies prevent a specific effective employment of the slow fibres in this case.

Concepts: Insect, Mandible, Force, Beetle, Cockroach, Blattidae, Cockroaches, American cockroach


The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals.

Concepts: Bone, Skeletal system, Mandible, Skull, Tetrapod, Synapsid, Jaw, Acanthostega