Discover the most talked about and latest scientific content & concepts.

Concept: Malaria


Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

Concepts: DNA, Gene, Genetics, Allele, Malaria, Plasmodium, Anopheles, Mosquito


There is much evidence that some pathogens manipulate the behaviour of their mosquito hosts to enhance pathogen transmission. However, it is unknown whether this phenomenon exists in the interaction of Anopheles gambiae sensu stricto with the malaria parasite, Plasmodium falciparum - one of the most important interactions in the context of humanity, with malaria causing over 200 million human cases and over 770 thousand deaths each year. Here we demonstrate, for the first time, that infection with P. falciparum causes alterations in behavioural responses to host-derived olfactory stimuli in host-seeking female An. gambiae s.s. mosquitoes. In behavioural experiments we showed that P. falciparum-infected An. gambiae mosquitoes were significantly more attracted to human odors than uninfected mosquitoes. Both P. falciparum-infected and uninfected mosquitoes landed significantly more on a substrate emanating human skin odor compared to a clean substrate. However, significantly more infected mosquitoes landed and probed on a substrate emanating human skin odor than uninfected mosquitoes. This is the first demonstration of a change of An. gambiae behaviour in response to olfactory stimuli caused by infection with P. falciparum. The results of our study provide vital information that could be used to provide better predictions of how malaria is transmitted from human being to human being by An. gambiae s.s. females. Additionally, it highlights the urgent need to investigate this interaction further to determine the olfactory mechanisms that underlie the differential behavioural responses. In doing so, new attractive compounds could be identified which could be used to develop improved mosquito traps for surveillance or trapping programmes that may even specifically target P. falciparum-infected An. gambiae s.s. females.

Concepts: Immune system, Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Mosquito


Could some vaccines drive the evolution of more virulent pathogens? Conventional wisdom is that natural selection will remove highly lethal pathogens if host death greatly reduces transmission. Vaccines that keep hosts alive but still allow transmission could thus allow very virulent strains to circulate in a population. Here we show experimentally that immunization of chickens against Marek’s disease virus enhances the fitness of more virulent strains, making it possible for hyperpathogenic strains to transmit. Immunity elicited by direct vaccination or by maternal vaccination prolongs host survival but does not prevent infection, viral replication or transmission, thus extending the infectious periods of strains otherwise too lethal to persist. Our data show that anti-disease vaccines that do not prevent transmission can create conditions that promote the emergence of pathogen strains that cause more severe disease in unvaccinated hosts.

Concepts: Immune system, Infectious disease, Natural selection, Microbiology, Malaria, Vaccination, Smallpox, Marek's disease


Background Each year, rotavirus gastroenteritis is responsible for about 37% of deaths from diarrhea among children younger than 5 years of age worldwide, with a disproportionate effect in sub-Saharan Africa. Methods We conducted a randomized, placebo-controlled trial in Niger to evaluate the efficacy of a live, oral bovine rotavirus pentavalent vaccine (BRV-PV, Serum Institute of India) to prevent severe rotavirus gastroenteritis. Healthy infants received three doses of the vaccine or placebo at 6, 10, and 14 weeks of age. Episodes of gastroenteritis were assessed through active and passive surveillance and were graded on the basis of the score on the Vesikari scale (which ranges from 0 to 20, with higher scores indicating more severe disease). The primary end point was the efficacy of three doses of vaccine as compared with placebo against a first episode of laboratory-confirmed severe rotavirus gastroenteritis (Vesikari score, ≥11) beginning 28 days after dose 3. Results Among the 3508 infants who were included in the per-protocol efficacy analysis, there were 31 cases of severe rotavirus gastroenteritis in the vaccine group and 87 cases in the placebo group (2.14 and 6.44 cases per 100 person-years, respectively), for a vaccine efficacy of 66.7% (95% confidence interval [CI], 49.9 to 77.9). Similar efficacy was seen in the intention-to-treat analyses, which showed a vaccine efficacy of 69.1% (95% CI, 55.0 to 78.7). There was no significant between-group difference in the risk of adverse events, which were reported in 68.7% of the infants in the vaccine group and in 67.2% of those in the placebo group, or in the risk of serious adverse events (in 8.3% in the vaccine group and in 9.1% in the placebo group); there were 27 deaths in the vaccine group and 22 in the placebo group. None of the infants had confirmed intussusception. Conclusions Three doses of BRV-PV, an oral rotavirus vaccine, had an efficacy of 66.7% against severe rotavirus gastroenteritis among infants in Niger. (Funded by Médecins sans Frontières Operational Center and the Kavli Foundation; number, NCT02145000 .).

Concepts: Clinical trial, Malaria, Vaccine, Rotavirus, Placebo, Pediatrics, Diarrhea, Rotavirus vaccine


Anopheles arabiensis is a dominant vector of malaria in sub-Saharan Africa, which feeds indoors and outdoors on human and other vertebrate hosts, making it a difficult species to control with existing control methods. Novel methods that reduce human-vector interactions are, therefore, required to improve the impact of vector control programmes. Investigating the mechanisms underlying the host discrimination process in An. arabiensis could provide valuable knowledge leading to the development of novel control technologies. In this study, a host census and blood meal analysis were conducted to determine the host selection behaviour of An. arabiensis. Since mosquitoes select and discriminate among hosts primarily using olfaction, the volatile headspace of the preferred non-human host and non-host species, were collected. Using combined gas chromatography and electroantennographic detection analysis followed by combined gas chromatography and mass spectrometry, the bioactive compounds in the headspace collections were identified. The efficiency of the identified non-host compounds to repel host-seeking malaria mosquitoes was tested under field conditions.

Concepts: Human, Malaria, Africa, Sub-Saharan Africa, Anopheles, Mosquito, Vector, Mosquito control


Background Malaria control has not been routinely informed by the assessment of subnational variation in malaria deaths. We combined data from the Malaria Atlas Project and the Global Burden of Disease Study to estimate malaria mortality across sub-Saharan Africa on a grid of 5 km(2) from 1990 through 2015. Methods We estimated malaria mortality using a spatiotemporal modeling framework of geolocated data (i.e., with known latitude and longitude) on the clinical incidence of malaria, coverage of antimalarial drug treatment, case fatality rate, and population distribution according to age. Results Across sub-Saharan Africa during the past 15 years, we estimated that there was an overall decrease of 57% (95% uncertainty interval, 46 to 65) in the rate of malaria deaths, from 12.5 (95% uncertainty interval, 8.3 to 17.0) per 10,000 population in 2000 to 5.4 (95% uncertainty interval, 3.4 to 7.9) in 2015. This led to an overall decrease of 37% (95% uncertainty interval, 36 to 39) in the number of malaria deaths annually, from 1,007,000 (95% uncertainty interval, 666,000 to 1,376,000) to 631,000 (95% uncertainty interval, 394,000 to 914,000). The share of malaria deaths among children younger than 5 years of age ranged from more than 80% at a rate of death of more than 25 per 10,000 to less than 40% at rates below 1 per 10,000. Areas with high malaria mortality (>10 per 10,000) and low coverage (<50%) of insecticide-treated bed nets and antimalarial drugs included much of Nigeria, Angola, and Cameroon and parts of the Central African Republic, Congo, Guinea, and Equatorial Guinea. Conclusions We estimated that there was an overall decrease of 57% in the rate of death from malaria across sub-Saharan Africa over the past 15 years and identified several countries in which high rates of death were associated with low coverage of antimalarial treatment and prevention programs. (Funded by the Bill and Melinda Gates Foundation and others.).

Concepts: Death, Malaria, Africa, Sub-Saharan Africa, Equatorial Guinea, Central African Republic, Cameroon, Gabon


Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer selection on host choice behavior within these vector populations; possibly in response to vector control. Controlled host-choice assays are needed to discern whether the observed genetic component has a direct relationship with innate host preference. A better understanding of the genetic basis for host feeding behavior in An. arabiensis may also open avenues for novel vector control strategies based on driving genes for zoophily into wild mosquito populations.

Concepts: Gene, Genetics, Malaria, Anopheles, Mosquito, Principal component analysis, Mosquito control, Anopheles gambiae


The most cost-effective intervention for certain infectious diseases is to eliminate them entirely. This article reviews the characteristics of potentially eradicable diseases and surveys current eradication methods.

Concepts: Epidemiology, Disease, Infectious disease, Malaria, Infection


Mosquito-borne disease is an annual problem in Australia, with endemic pathogens such as Ross River virus infecting thousands of people each year. The recent emergence of Zika virus in South America and the Pacific, together with ongoing outbreaks of dengue viruses in Southeast Asia, generated great community interest in the most effective strategies to avoid mosquito bites. Large-scale mosquito control programs are not common in Australia and are limited in New South Wales (NSW). The use of topical insect repellents is a key recommendation by health authorities to prevent mosquito-borne disease. All products sold in Australia purporting to repel mosquitoes must be registered with the Australian Pesticides and Veterinary Medicines Authority. Despite around 100 commercial products registered as repelling mosquitoes, there are relatively few active ingredients used across these formulations. The most common are diethyltoluamide (DEET), picaridin, p-menthane-3,8-diol (PMD) and a range of plant-derived products (e.g. melaleuca, eucalyptus, citronella oils). Research has shown that each of these active ingredients varies in the duration of protection provided against biting mosquitoes. Recommendations by health authorities are informed by this research, but inconsistencies between recommendations and available repellent formulations and their concentration of active ingredients can cause confusion in the community. There are conflicts between the data resulting from scholarly research, marketing promotion by manufacturers and recommendations provided by overseas health authorities. A review was undertaken of NSW Health’s current recommendations on choosing and using insect repellents, taking into consideration recent research and currently registered topical repellents.

Concepts: Malaria, Mosquito, Australia, Dengue fever, West Nile virus, Insect repellent, DEET, New South Wales


The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time.

Concepts: Malaria, Plasmodium falciparum, Plasmodium, Plasmodium vivax, Anopheles, Apicomplexa, Malaysia, Plasmodium knowlesi