Discover the most talked about and latest scientific content & concepts.

Concept: Malacostraca


The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion (‘wood eating’), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.

Concepts: DNA, Gene, Gene expression, RNA, Developmental biology, Model organism, Crustacean, Malacostraca


Pig carcasses, as human proxies, were placed on the seabed at a depth of 300 m, in the Strait of Georgia and observed continuously by a remotely operated camera and instruments. Two carcasses were deployed in spring and two in fall utilizing Ocean Network Canada’s Victoria Experimental Network under the Sea (formerly VENUS) observatory. A trial experiment showed that bluntnose sixgill sharks could rapidly devour a carcass so a platform was designed which held two matched carcasses, one fully exposed, the other covered in a barred cage to protect it from sharks, while still allowing invertebrates and smaller vertebrates access. The carcasses were deployed under a frame which supported a video camera, and instruments which recorded oxygen, temperature, salinity, density, pressure, conductivity, sound speed and turbidity at per minute intervals. The spring exposed carcass was briefly fed upon by sharks, but they were inefficient feeders and lost interest after a few bites. Immediately after deployment, all carcasses, in both spring and fall, were very rapidly covered in vast numbers of lyssianassid amphipods. These skeletonized the carcasses by Day 3 in fall and Day 4 in spring. A dramatic, very localized drop in dissolved oxygen levels occurred in fall, exactly coinciding with the presence of the amphipods. Oxygen levels returned to normal once the amphipods dispersed. Either the physical presence of the amphipods or the sudden draw down of oxygen during their tenure, excluded other fauna. The amphipods fed from the inside out, removing the skin last. After the amphipods had receded, other fauna colonized such as spot shrimp and a few Dungeness crabs but by this time, all soft tissue had been removed. The amphipod activity caused major bioturbation in the local area and possible oxygen depletion. The spring deployment carcasses became covered in silt and a black film formed on them and on the silt above them whereas the fall bones remained uncovered and hence continued to be attractive to large numbers of spot shrimp. The carcass remains were recovered after 166 and 134 days respectively for further study.

Concepts: Oxygen, Arthropod, Water pollution, Crustacean, Malacostraca, Strait of Georgia, Dungeness crab, Bluntnose sixgill shark


SUMMARY Parasites are known to affect the predatory behaviour or diet of their hosts. In relation to biological invasions, parasites may significantly influence the invasiveness of the host population and/or mediate the relationships between the invader and the invaded community. Dikerogammarus villosus, a recently introduced species, has had a major impact in European rivers. Notably, its high position in trophic web and high predatory behaviour, have both facilitated its invasive success, and affected other macroinvertebrate taxa in colonized habitats. The intracellular parasite Cucumispora dikerogammari, specific to D. villosus, has successfully dispersed together with this amphipod. Data presented here have shown that D. villosus infected by this parasite have a reduced predatory behaviour compared with healthy individuals, and are much more active suggesting that the co-invasive parasite may diminish the predatory pressure of D. villosus on newly colonized communities.

Concepts: Species, Fungus, Ecology, Crustacean, Invasive species, Introduced species, Malacostraca, Amphipoda


Haemocyanin (Hc) is a copper-containing respiratory protein, floating freely dissolved in the hemolymph of many arthropod species. A typical haemocyanin is a hexamer or oligohexamer of six identical or similar subunits, with a molecular mass around 75 kDa each. In the crustaceans, the haemocyanins appear to be restricted to the remipedes and the malacostracans. We have investigated the haemocyanins of two freshwater shrimps, the Amano shrimp Caridina multidentata and the bamboo shrimp Atyopsis moluccensis. We obtained three full-length and one partial cDNA sequences of haemocyanin subunits from the Amano shrimp, which were assigned to the α- and γ-types of decapod haemocyanin subunits. Three complete and two partial haemocyanin cDNA sequences were obtained from the bamboo shrimp, which represent subunit types α, β and γ. This is the first time that sequences of all three subunit types of the decapod haemocyanins were obtained from a single species. However, mass spectrometry analyses identified only α- and γ-type subunits, suggesting that a β-subunit is not a major component of the native haemocyanin of the bamboo shrimp. Phylogenetic and molecular clock analyses showed that malacostracan haemocyanins commenced to diversify into distinct subunit types already ~515 million years ago. β-subunits diverged first, followed by α- and γ-type subunits ~396 million years ago. The haemocyanins of phyllocarids and peracarids form distinct clades within the α/γ-cluster. Within the Caridea, an early divergence of distinct α-type subunits occurred ~200 MYA. The tree of the γ-subunits suggests a common clade of the Caridea (shrimps) and Penaeidae (prawns).

Concepts: Arthropod, Crustacean, Prawn, Shrimp, Caridea, Decapoda, Malacostraca, Caridina multidentata


One of the most complex eyes in the animal kingdom can be found in species of stomatopod crustaceans (mantis shrimp), some of which have 12 different photoreceptor types, each sampling a narrow set of wavelengths ranging from deep ultraviolet to far red (300 to 720 nanometers). Functionally, this chromatic complexity has presented a mystery. Why use 12 color channels when three or four are sufficient for fine color discrimination? Behavioral wavelength discrimination tests (Δλ functions) in stomatopods revealed a surprisingly poor performance, ruling out color vision that makes use of the conventional color-opponent coding system. Instead, our experiments suggest that stomatopods use a previously unknown color vision system based on temporal signaling combined with scanning eye movements, enabling a type of color recognition rather than discrimination.

Concepts: Light, Crustacean, Eye, Visible spectrum, Color vision, Shrimp, Mantis shrimp, Malacostraca


While a number of neuroanatomical studies in other malacostracan taxa have recently contributed to the reconstruction of the malacostracan ground pattern, little is known about the nervous system in the three enigmatic blind groups of peracarids from relict habitats, Thermosbaenacea, Spelaeogriphacea, and Mictocarididae. This first detailed description of the brain in a representative of each taxon is largely based on a combination of serial semi-thin sectioning and computer-aided 3D-reconstructions. In addition, the mictocaridid Mictocaris halope was studied with a combination of immunolabeling (tubulin, nuclear counter-stains) and confocal laser scanning microscopy, addressing also the ventral nerve cord.

Concepts: Central nervous system, Nervous system, Brain, Arthropod, Human brain, Nerve, Malacostraca, Crustaceans


Isopods (woodlice, slaters and their relatives) are common crustaceans and abundant in numerous habitats. They employ a variety of lifestyles including free-living scavengers and predators but also obligate parasites. This modern-day variability of lifestyles is not reflected in isopod fossils so far, mostly as the life habits of many fossil isopods are still unclear. A rather common group of fossil isopods is Urda (190-100 million years). Although some of the specimens of different species of Urda are considered well preserved, crucial characters for the interpretation of their lifestyle (and also of their phylogenetic position), have so far not been accessible.

Concepts: Evolution, Biology, Species, Crustacean, Fossil, Malacostraca, Isopoda, Woodlouse


Stomatopod crustaceans, or mantis shrimp, are renowned for their complex visual systems. Their array of 16 types of photoreceptors provides complex color reception, as well as linear and circular polarization sensitivity [1-6]. The least-understood components of their retina are the UV receptors, of which there are up to six distinct, narrowly tuned spectral types [4]. Here we show that in the stomatopod species Neogonodactylus oerstedii, this set of receptors is based on only two visual pigments. Surprisingly, five of the six UV receptor types contain the same visual pigment. The various UV receptors are spectrally tuned by a novel set of four short- and long-pass UV-specific optical filters in the overlying crystalline cones. These filters are composed of various mycosporine-like amino acid (MAA) pigments. Commonly referred to as “nature’s sunscreens,” MAAs are usually employed for UV photoprotection [7, 8], but mantis shrimp uniquely incorporate them into powerful spectral tuning filters, extending and diversifying their preeminently elaborate photoreceptive arsenal. VIDEO ABSTRACT:

Concepts: Crustacean, Sunlight, Photoreceptor cell, Titanium dioxide, Polarization, Shrimp, Mantis shrimp, Malacostraca


In gregarious species, social interactions maintain group cohesion and the associated adaptive values of group living. The understanding of mechanisms leading to group cohesion is essential for understanding the collective dynamics of groups and the spatio-temporal distribution of organisms in environment. In this view, social aggregation in terrestrial isopods represents an interesting model due to its recurrence both in the field and in the laboratory. In this study, and under a perturbation context, we experimentally tested the stability of groups of woodlice according to group size and time spent in group. Our results indicate that the response to the disturbance of groups decreases with increases in these two variables. Models neglecting social effects cannot reproduce experimental data, attesting that cohesion of aggregation in terrestrial isopods is partly governed by a social effect. In particular, models involving calmed and excited individuals and a social transition between these two behavioural states more accurately reproduced our experimental data. Therefore, we concluded that group cohesion (and collective response to stimulus) in terrestrial isopods is governed by a transitory resting state under the influence of density of conspecifics and time spent in group. Lastly, we discuss the nature of direct or indirect interactions possibly implicated.

Concepts: Organism, Sociology, Crustacean, Experiment, Social relation, Malacostraca, Isopoda, Woodlouse


The discovery of many fragments of viral genomes integrated in the genome of their eukaryotic host (endogenous viral elements; EVEs) has recently opened new avenues to further our understanding of viral evolution and of host-virus interactions. Here, we report the results of a comprehensive screen for EVEs in crustaceans. Following up on the recent discovery of EVEs in the terrestrial isopod, Armadillidium vulgare, we scanned the genomes of six crustacean species: a terrestrial isopod (Armadillidium nasatum), two water fleas (Daphnia pulex and D. pulicaria), two copepods (the salmon louse, Lepeophtheirus salmonis and Eurytemora affinis), and a freshwater amphipod (Hyalella azteca).

Concepts: Virus, Species, Insect, Crustacean, Sea louse, Malacostraca, Woodlouse, Krill