SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Magnetite

169

Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe(2+) to Fe(3+) molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.

Concepts: Oxygen, Carbon dioxide, Iron oxide, Magnetite, Gallic acid

168

This work is aimed to evaluate a method to detect the residual magnetic nanoparticles (MNPs) in animal tissues. Ferric ions released from MNPs through acidification with hydrochloric acid can be measured by complexation with potassium thiocyanate. MNPs in saline could be well detected by this chemical colorimetric method, whereas the detected sensitivity decreased significantly when MNPs were mixed with mouse tissue homogenates. In order to check the MNPs in animal tissues accurately, three improvements have been made. Firstly, proteinase K was used to digest the proteins that might bind with iron, and secondly, ferrosoferric oxide (Fe3O4) was collected by a magnetic field which could capture MNPs and leave the bio-iron in the supernatant. Finally, the collected MNPs were carbonized in the muffle furnace at 420[degree sign]C before acidification to ruin the groups that might bind with ferric ions such as porphyrin. Using this method, MNPs in animal tissues could be well measured while avoiding the disturbance of endogenous iron and iron-binding groups.

Concepts: Magnetic field, Hydrogen, Magnetism, Sodium chloride, PH, Chlorine, Magnetite, Ferric

166

The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms.

Concepts: DNA, Bacteria, Iron, Organism, Microbiology, Mineral, Magnetite, Magnetotactic bacteria

166

We report the preparation and characterization of spherical core-shell structured Fe3O4-Au magnetic nanoparticles, modified with two component self-assembled monolayers (SAMs) consisting of 3-mercaptophenylboronic acid (3-MBA) and 1-decanethiol (1-DT). The rapid and room temperature synthesis of magnetic nanoparticles was achieved using the hydroxylamine reduction of HAuCl4 on the surface of ethylenediaminetetraacetic acid (EDTA)-immobilized iron (magnetite Fe3O4) nanoparticles in the presence of an aqueous solution of hexadecyltrimetylammonium bromide (CTAB) as a dispersant. The reduction of gold on the surface of Fe3O4 nanoparticles exhibits a uniform, highly stable, and narrow particle size distribution of Fe3O4-Au nanoparticles with an average diameter of 9 ± 2 nm. The saturation magnetization value for the resulting nanoparticles was found to be 15 emu/g at 298 K. Subsequent surface modification with SAMs against glucoside moieties on the surface of bacteria provided effective magnetic separation. Comparison of the bacteria capturing efficiency, by means of different molecular recognition agents 3-MBA, 1-DT and the mixed monolayer of 3-MBA and 1-DT was presented. The best capturing efficiency of E. coli was achieved with the mixed monolayer of 3-MBA and 1-DT-modified nanoparticles. Molecular specificity and selectivity were also demonstrated by comparing the surface-enhanced Raman scattering (SERS) spectrum of E. coli-nanoparticle conjugates with bacterial growth media.

Concepts: Bacteria, Gut flora, Nanoparticle, Escherichia coli, Chemistry, Magnetism, Proteobacteria, Magnetite

61

Abnormal accumulation of brain metals is a key feature of Alzheimer’s disease (AD). Formation of amyloid-β plaque cores (APC) is related to interactions with biometals, especially Fe, Cu and Zn, but their particular structural associations and roles remain unclear. Using an integrative set of advanced transmission electron microscopy (TEM) techniques, including spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM), nano-beam electron diffraction, electron holography and analytical spectroscopy techniques (EDX and EELS), we demonstrate that Fe in APC is present as iron oxide (Fe3O4) magnetite nanoparticles. Here we show that Fe was accumulated primarily as nanostructured particles within APC, whereas Cu and Zn were distributed through the amyloid fibers. Remarkably, these highly organized crystalline magnetite nanostructures directly bound into fibrillar Aβ showed characteristic superparamagnetic responses with saturated magnetization with circular contours, as observed for the first time by off-axis electron holography of nanometer scale particles.

Concepts: Electron, Iron, Magnetism, Aluminium, Transmission electron microscopy, Iron ore, Magnetite, Hematite

30

Oxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref. 4), can be used to transport drug-loaded nanoliposomes into hypoxic regions of the tumour. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system. We show that when MC-1 cells bearing covalently bound drug-containing nanoliposomes were injected near the tumour in severe combined immunodeficient beige mice and magnetically guided, up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell. Our results suggest that harnessing swarms of microorganisms exhibiting magneto-aerotactic behaviour can significantly improve the therapeutic index of various nanocarriers in tumour hypoxic regions.

Concepts: Electron, Archaea, Bacteria, Magnetic field, Magnet, Magnetism, Magnetite, Field line

28

Nanostructured particles with a magnetic core and a photocatalytic shell are very interesting systems for their properties to be magnetically separable (and so reusable) in photocatalytic water depuration implant. Here, a robust, low time-consuming, easily scale up method to produce Fe(3)O(4)/SiO(2)/TiO(2) hierarchical nanostructures starting from commercial precursors (i.e. Fe(3)O(4), SiO(2)) by employing a colloidal approach (i.e. heterocoagulation) coupled with the spray-drying technique is presented. In particular, a self-assembled layer-by-layer methodology based on the coagulation of dissimilar colloidal particles was applied. First, a passive layer of silica (SiO(2), amorphous) was created on magnetite in order to avoid detrimental phenomena arising from the direct contact between magnetite and titania, then the deposition of titania onto silica-coated-magnetite was promoted. TiO(2), SiO(2) and Fe(3)O(4) nanosols were characterized in terms of zeta potential, optimized and a self-assembled layer-by-layer approach was followed in order to promote the heterocoagulation of silica onto magnetite surface and of titania onto silica coated magnetite. Once optimized the colloidal route, the mixture was then spray-dried to obtain a granulated powder with nano-scale reactivity, easier to handle and re-disperse in comparison to starting nanopowders with the same surface properties. The nanostructured particles have been characterized by different techniques such as SEM, TEM, XDR and their magnetic properties have been investigated. Moreover, preliminary photocatalytic texts have been performed.

Concepts: Magnetic field, Magnetism, Colloid, Methodology, Silicon dioxide, Photocatalysis, Magnetite, Nanostructure

28

In the pursuit of optimized magnetic nanostructures for diagnostic and therapeutic applications, the role of nanoparticle architecture has been poorly investigated. In this study, we demonstrate that the internal collective organization of multi-core iron oxide nanoparticles can modulate their magnetic properties in such a way as to critically enhance their hyperthermic efficiency and their MRI T1 and T2 contrast effect. Multi-core nanoparticles comprised of maghemite cores were synthesized through a polyol approach and subsequent electrostatic colloidal sorting was used to fractionate the suspensions by size, and hence magnetic properties. We obtained stable suspensions of citrate-stabilized nanostructures ranging from single-core 10 nm nanoparticles, to multi-core magnetically-cooperative 30 nm nanoparticles. Three dimensional oriented attachment of primary cores results in enhanced magnetic susceptibility and decreased surface disorder compared to individual cores, while preserving the superparamagnetic behavior of the assembly and potentiating thermal losses. Exchange coupling in the assembly modifies the dynamics of the magnetic moment in such a way that both the longitudinal and transverse NMR relaxivities are also enhanced. Long term MRI detection of tumour cells and their efficient destruction by magnetic hyperthermia can be achieved thanks to a facile and non-toxic cell uptake of these iron oxide nanostructures. This study proves for the first time that cooperative magnetic behavior within highly crystalline iron oxide superparamagnetic multi-core assemblies can improve simultaneously therapeutic and diagnosis effectiveness over existing nanostructures, while preserving biocompatibility.

Concepts: Oncology, Iron oxide, Nuclear magnetic resonance, Magnetic resonance imaging, Magnetism, Colloid, Magnetite, Electric and magnetic fields in matter

27

The majority of water has vanished from modern meteorites, yet there remain signatures of water on ancient asteroids. How and when water disappeared from the asteroids is important, because the final fluid-concentrated chemical species played critical roles in the early evolution of organics and in the final minerals in meteorites. Here we show evidence of vestigial traces of water based on a nanometre-scale palaeomagnetic method, applying electron holography to the framboids in the Tagish Lake meteorite. The framboids are colloidal crystals composed of three-dimensionally ordered magnetite nanoparticles and therefore are only able to form against the repulsive force induced by the surface charge of the magnetite as a water droplet parches in microgravity. We demonstrate that the magnetites have a flux closure vortex structure, a unique magnetic configuration in nature that permits the formation of colloidal crystals just before exhaustion of water from a local system within a hydrous asteroid.

Concepts: Chondrite, Mars, Magnetism, Liquid, Surface tension, Impact event, Magnetite, Rainbow

27

Hollow Mn-doped iron oxide nanocontainers, formed by a novel one-pot synthetic process, fulfill the dual requirements of delivering an effective dose of an anticancer drug to tumor tissue and enabling image-contrast monitoring of the nanocontainer fate through T2 -weighted magnetic resonance imaging, thereby determining the optimal balance between diagnostic and therapeutic moieties in an all-in-one theranostic nanoplatform.

Concepts: Pharmacology, Oncology, Spin, Brain tumor, Nuclear magnetic resonance, Magnetic resonance imaging, Spin echo, Magnetite