Discover the most talked about and latest scientific content & concepts.

Concept: Magnetic nanoparticles


A novel enzyme-linked immunosorbent assay based on magnetic nanoparticles and biotin/streptavidin-HRP (MNP-bsELISA) was developed for rapid and sensitive detection of zearalenone (ZEN). The detection signal was enhanced and the sensitivity of the assay was improved by combined use of antibody-conjugated magnetic nanoparticles and biotin-streptavidin system. Under the optimized conditions, the regression equation for quantification of ZEN was y = -0.4287x + 0.3132 (R² = 0.9904). The working range was 0.07-2.41 ng/mL. The detection limit was 0.04 ng/mL and IC50 was 0.37 ng/mL. The recovery rates of intra-assay and inter-assay ranged from 92.8%-111.9% and 91.7%-114.5%, respectively, in spiked corn samples. Coefficients of variation were less than 10% in both cases. Parallel analysis of cereal and feed samples showed good correlation between MNP-bsELISA and liquid chromatograph-tandem mass spectrometry (R² = 0.9283). We conclude that this method is suitable for rapid detection of zearalenone in cereal and feed samples in relevant laboratories.

Concepts: Nanoparticle, Nanotechnology, ELISA, ELISPOT, Assay, Immunoassay, Magnetic nanoparticles, Magnetic immunoassay


Surface molecular imprinting, especially on the surface of silica-modified magnetic nanoparticles, has been proposed as a promising strategy for protein recognition and separation. Inspired by the self-polymerization of dopamine, we synthesized a polydopamine-based molecular imprinted film coating on silica-Fe(3)O(4) nanoparticles for recognition and separation of bovine hemoglobin (BHb). Magnetic molecularly imprinted nanoparticles (about 860 nm) possess a core-shell structure. Magnetic molecularly imprinted nanoparticles (MMIP) show a relatively high adsorption capacity (4.65 ± 0.38 mg g(-1)) and excellent selectivity towards BHb with a separation factor of 2.19. MMIP with high saturation magnetization (10.33 emu g(-1)) makes it easy to separate the target protein from solution by an external magnetic field. After three continuous adsorption and elution processes, the adsorption capacity of MMIP remained at 4.30 mg g(-1). Our results suggest that MMIPs are suitable for the removal of high abundance of protein and the enrichment of low abundance of protein in proteomics.

Concepts: Oxygen, Magnetic field, Magnetism, Magnetic moment, Chromatography, Permeability, Magnetization, Magnetic nanoparticles


The protein shell of apoferritin-encapsulated maghemite nanoparticles was functionalized with two different red-emitting perylenediimide fluorophores (PDI). One glycosacharide-PDI complex has been synthesized for the first time to be labeled to apoferritin-encapsulated maghemite nanoparticles. Bifunctionality of maghemite@perylenediimide was demonstrated by both magnetic-core and fluorescent-labeled shell properties. SQUID measurements confirmed superparamagnetic behavior above 35K. Fluorescence of perylenediimides is retained once attached to the magnetic nanoparticle. Moreover, fluorescence microscopy showed that one of these fluorescent-magnetic nanoparticles was specifically internalized in bifidobacteria without affecting cell viability. These results revealed that the dual-modal imaging probes of maghemite@perylenediimide nanoparticles have the potential to be used as optical/MR dual imaging agents.

Concepts: Protein, Magnetic field, Nanoparticle, Microscope, Magnetism, Nanotechnology, Microscopy, Magnetic nanoparticles


The incidence of wound infections that do not adequately respond to standard-of-care antimicrobial treatment has been increasing. To address this challenge, a novel antimicrobial magnetic thermotherapy platform has been developed in which a high-amplitude, high-frequency, alternating magnetic field is used to rapidly heat magnetic nanoparticles that are bound to Staphylococcus aureus (S. aureus). The antimicrobial efficacy of this platform was evaluated in the treatment of both an in vitro culture model of S. aureus biofilm and a mouse model of cutaneous S. aureus infection. We demonstrated that an antibody-targeted magnetic nanoparticle bound to S. aureus was effective at thermally inactivating S. aureus and achieving accelerated wound healing without causing tissue injury.

Concepts: Magnetic field, Nanoparticle, Staphylococcus aureus, Infection, Staphylococcus, Magnetism, Wound, Magnetic nanoparticles


Magnetic nanoparticles (NPs) loaded with antitumor drugs in combination with an external magnetic field (EMF)-guided delivery can improve the efficacy of treatment and may decrease serious side effects. The purpose of this study was 1) to investigate application of PEG modified GMNPs (PGMNPs) as a drug carrier of the chemotherapy compound doxorubicin (DOX) in vitro; 2) to evaluate the therapeutic efficiency of DOX-conjugated PGMNPs (DOX-PGMNPs) using an EMF-guided delivery in vivo.

Concepts: Cancer, Breast cancer, Magnetic field, Nanoparticle, Chemotherapy, Doxorubicin, Anthracycline, Magnetic nanoparticles


Nanoparticle clusters (NPCs) have attracted significant interest owing to their unique characteristics arising from their collective individual properties. Nonetheless, the construction of NPCs in a structurally well-defined and size-controllable manner remains a challenge. Here we demonstrate a strategy to construct size-controlled NPCs using the DNA-binding zinc finger (ZnF) protein. Biotinylated ZnF was conjugated to DNA templates with different lengths, followed by incubation with neutravidin-conjugated nanoparticles. The sequence specificity of ZnF and programmable DNA templates enabled a size-controlled construction of NPCs, resulting in a homogeneous size distribution. We demonstrated the utility of magnetic NPCs by showing a three-fold increase in the spin-spin relaxivity in MRI compared with Feridex. Furthermore, folate-conjugated magnetic NPCs exhibited a specific targeting ability for HeLa cells. The present approach can be applicable to other nanoparticles, finding wide applications in many areas such as disease diagnosis, imaging, and delivery of drugs and genes.

Concepts: DNA, Protein, Gene, Molecular biology, Nanoparticle, Nanotechnology, Magnetic nanoparticles, Zinc finger protein


To limit cytotoxicity of anticancer drugs against healthy cells an appropriate carrier should be synthesized to deliver the drug to the tumor tissue only. A good solution is to anchor a magnetic nanoparticle to the molecule of the drug and to use a properly directed external magnetic field. The modified by us synthesis of the conjugate of doxorubicin with magnetic nanoparticles (iron oxide) resulted in a substantial depression of the aggregation process of the nanoparticles and therefore allowed the correct examination of cytotoxicity of the modified drug. It has been shown, by performing the electrochemical microbalance measurements, that the use of magnetic field guaranteed the efficient delivery of the drug to the desired place. The change in the synthesis procedure led to an increase in the number of DOX molecules attached to one magnetic nanoparticle. The release of the drug took place at pH 5.8 (and below it), which pH characterizes the cancer cells. It has also been found that while the iron oxide magnetic nanoparticles were not cytotoxic toward human urinary bladder carcinoma cells UM-UC-3, the tumor cell sensitivity of the DOX-Np complex was slightly higher in comparison to the identical concentration of doxorubicin alone.

Concepts: DNA, Cancer, Oncology, Magnetic field, Chemotherapy, Tumor, Neoplasm, Magnetic nanoparticles


Liposome-capped core-shell mesoporous silica-coated superparamagnetic iron oxide nanoparticles called ‘magnetic protocells’ were prepared as novel nanocomposites and used for loading anticancer drug doxorubicin (DOX) for cellular toxicity study. Cytotoxicity of the magnetic protocells with or without DOX was tested in vitro on commercial MCF7 and U87 cell lines under alternating magnetic field. MCF7 cell line treated with the DOX-loaded nanoparticles under alternating magnetic field exhibited nearly 20% lower survival rate after 24 h compared with cells treated with free DOX and similarly, it was around 24% when applied to U87. The results indicate that the magnetic protocells could be useful for future cancer treatment in vivo by the combination of targeted drug delivery and magnetic hyperthermia.

Concepts: DNA, Cell, Breast cancer, Magnetic field, Iron oxide, Cell biology, Magnetism, Magnetic nanoparticles


Nanomedicine is an emerging field, which constitutes a new direction in the treatment of cancer. Magnetic nanoparticles (MNPs) can circumvent vascular tissue to concentrate at the site of the tumor. Under the influence of an external, alternating magnetic field, MNPs generate high temperatures within the tumor and ablate malignant cells while inflicting minimal damage to healthy host tissue. Due to their theranostic properties, they constitute a promising candidate for the treatment of cancer. A critical review of the type, size and therapeutic effect of different MNPs is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry, with a few studies moving to clinical trials within the next 5 years.

Concepts: Clinical trial, Cancer, Oncology, Magnetic field, Magnetism, Nanotechnology, Malignancy, Magnetic nanoparticles


The needs of scalable product purification as well as the demand for sensitive diagnostics for highly dilute entities can be addressed with the utilization of tailored superparamagnetic nanoparticles. Recent developments have led to more efficient fluidic systems at different scales with suspended nanoparticles or nanoparticle aggregates. However, magnetic nanoparticle systems differ widely in properties and their applications are characterized by very specific challenges. This review summarizes advances in the synthesis of superparamagnetic particles and displays states and trends in research making use of these particles in biotechnological downstream processing and in biosensing.

Concepts: Nanoparticle, Biotechnology, Magnetism, Nanotechnology, Nanomaterials, Chemical engineering, Superparamagnetism, Magnetic nanoparticles