Discover the most talked about and latest scientific content & concepts.

Concept: Magnetic moment


Spin-transfer torques offer great promise for the development of spin-based devices. The effects of spin-transfer torques are typically analysed in terms of adiabatic and non-adiabatic contributions. Currently, a comprehensive interpretation of the non-adiabatic term remains elusive, with suggestions that it may arise from universal effects related to dissipation processes in spin dynamics, while other studies indicate a strong influence from the symmetry of magnetization gradients. Here we show that enhanced magnetic imaging under dynamic excitation can be used to differentiate between non-adiabatic spin-torque and extraneous influences. We combine Lorentz microscopy with gigahertz excitations to map the orbit of a magnetic vortex core with <5 nm resolution. Imaging of the gyrotropic motion reveals subtle changes in the ellipticity, amplitude and tilt of the orbit as the vortex is driven through resonance, providing a robust method to determine the non-adiabatic spin torque parameter β=0.15±0.02 with unprecedented precision, independent of external effects.

Concepts: Magnetic field, Angular momentum, Fundamental physics concepts, Torque, Magnetism, Magnetic moment, Force, Sound


Electronic carriers in graphene show a high carrier mobility at room temperature. Thus, this system is widely viewed as a potential future charge-based high-speed electronic material to complement-or replace-silicon. At the same time, the spin properties of graphene have suggested improved capability for spin-based electronics or spintronics and spin-based quantum computing. As a result, the detection, characterization and transport of spin have become topics of interest in graphene. Here we report a microwave photo-excited transport study of monolayer and trilayer graphene that reveals an unexpectedly strong microwave-induced electrical response and dual microwave-induced resonances in the dc resistance. The results suggest the resistive detection of spin resonance, and provide a measurement of the g-factor, the spin relaxation time and the sub-lattice degeneracy splitting at zero magnetic field.

Concepts: Electron, Electromagnetism, Fundamental physics concepts, Spin, Nuclear magnetic resonance, Magnetic moment, Materials science, Physical quantities


A major obstacle to the efficient production of antibody conjugates for therapy and diagnosis is the non-ideal performance of commonly used chemical methods for the attachment of effector-molecules to the antibody of interest. Here we demonstrate that this limitation can be simply addressed using 3,4-substituted maleimides to bridge and thus functionalize disulfide bonds to generate homogeneous antibody conjugates. This one-step conjugation reaction is fast, site-specific, quantitative and generates products with full binding activity, good plasma stability and the desired functional properties. Furthermore, the rigid nature of this modification by disulfide bridging enables the successful detection of antigen with a spin labeled antibody fragment by continuous-wave electron paramagnetic resonance (cw-EPR), which we report here for the first time. Antigen detection is concentration dependent, observable in human blood and allows the discrimination of fragments with different binding affinity. We envisage broad potential for antibody based in-solution diagnostic methods by EPR or ‘spinostics’.

Concepts: Immune system, Antibody, Protein, Magnetic field, Blood, Fundamental physics concepts, Magnetic moment, Electron paramagnetic resonance


The realization of a controllable metamagnetic transition from AFM to FM ordering would open the door to a plethora of new spintronics based devices that, rather than reorienting spins in a ferromagnet, harness direct control of a materials intrinsic magnetic ordering. In this study FeRh films with drastically reduced transition temperatures and a large magneto-thermal hysteresis were produced for magnetocaloric and spintronics applications. Remarkably, giant controllable magnetization changes (measured to be as high has ~25%) are realized by manipulating the strain transfer from the external lattice when subjected to two structural phase transitions of BaTiO3 (001) single crystal substrate. These magnetization changes are the largest seen to date to be controllably induced in the FeRh system. Using polarized neutron reflectometry we reveal how just a slight in plane surface strain change at ~290C results in a massive magnetic transformation in the bottom half of the film clearly demonstrating a strong lattice-spin coupling in FeRh. By means of these substrate induced strain changes we show a way to reproducibly explore the effects of temperature and strain on the relative stabilities of the FM and AFM phases in multi-domain metamagnetic systems. This study also demonstrates for the first time the depth dependent nature of a controllable magnetic order using strain in an artificial multiferroic heterostructure.

Concepts: Magnetic field, Fundamental physics concepts, Spin, Paramagnetism, Magnetism, Ferromagnetism, Magnetic moment, Permeability


The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.

Concepts: Electron, Magnetic field, Spin, Atom, Nuclear magnetic resonance, Magnetism, Magnetic moment, Storage media


Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm(3), and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m(3) (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

Concepts: Electron, Magnetic field, Magnet, Magnetism, Magnetic moment, Nylon, Tensile strength, Lodestone


Magnetically actuated ciliary microrobots were designed, fabricated, and manipulated to mimic cilia-based microorganisms such as paramecia. Full three-dimensional (3D) microrobot structures were fabricated using 3D laser lithography to form a polymer base structure. A nickel/titanium bilayer was sputtered onto the cilia part of the microrobot to ensure magnetic actuation and biocompatibility. The microrobots were manipulated by an electromagnetic coil system, which generated a stepping magnetic field to actuate the cilia with non-reciprocal motion. The cilia beating motion produced a net propulsive force, resulting in movement of the microrobot. The magnetic forces on individual cilia were calculated with various input parameters including magnetic field strength, cilium length, applied field angle, actual cilium angle, etc., and the translational velocity was measured experimentally. The position and orientation of the ciliary microrobots were precisely controlled, and targeted particle transportation was demonstrated experimentally.

Concepts: Electron, Electromagnetism, Magnetic field, Electric field, Magnetism, Ferromagnetism, Magnetic moment, Magnetic flux


Spin-based computing schemes could enable new functionalities beyond those of charge-based approaches. Examples include nanomagnetic logic, where information can be processed using dipole coupled nanomagnets, as demonstrated by multi-bit computing gates. One fundamental benefit of using magnets is the possibility of a significant reduction in the energy per bit compared with conventional transistors. However, so far, practical implementations of nanomagnetic logic have been limited by the necessity to apply a magnetic field for clocking. Although the energy associated with magnetic switching itself could be very small, the energy necessary to generate the magnetic field renders the overall logic scheme uncompetitive when compared with complementary metal-oxide-semiconductor (CMOS) counterparts. Here, we demonstrate a nanomagnetic logic scheme at room temperature where the necessity for using a magnetic field clock can be completely removed by using spin-orbit torques. We construct a chain of three perpendicularly polarized CoFeB nanomagnets on top of a tantalum wire and show that an unpolarized current flowing through the wire can ‘clock’ the perpendicular magnetization to a metastable state. An input magnet can then drive the nanomagnetic chain deterministically to one of two dipole-coupled states, ‘2 up 1 down’ or ‘2 down 1 up’, depending on its own polarization. Thus, information can flow along the chain, dictated by the input magnet and clocked solely by a charge current in tantalum, without any magnetic field. A three to four order of magnitude reduction in energy dissipation is expected for our scheme when compared with state-of-the-art nanomagnetic logic.

Concepts: Electromagnetism, Magnetic field, Fundamental physics concepts, Magnet, Electric current, Magnetism, Magnetic moment, Hall effect


Large thermal changes driven by a magnetic field have been proposed for environmentally friendly energy-efficient refrigeration, but only a few materials that suffer hysteresis show these giant magnetocaloric effects. Here we create giant and reversible extrinsic magnetocaloric effects in epitaxial films of the ferromagnetic manganite La(0.7)Ca(0.3)MnO(3) using strain-mediated feedback from BaTiO(3) substrates near a first-order structural phase transition. Our findings should inspire the discovery of giant magnetocaloric effects in a wide range of magnetic materials, and the parallel development of nanostructured bulk samples for practical applications.

Concepts: Magnetic field, Fundamental physics concepts, Magnet, Paramagnetism, Magnetism, Ferromagnetism, Magnetic moment, Phase transition


The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as (13)C and (15)N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest (13)C nuclear polarization (approximately 6% for [1-(13)C]ethyl acetate) at 3.35T and 1.4K was found to be around 40mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of (13)C and (15)N compounds with long spin-lattice relaxation time T(1). In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

Concepts: Spin, Acetone, Ethanol, Nuclear magnetic resonance, Magnetic moment, Solvent, Electron paramagnetic resonance, Chloroform