SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Macular degeneration

193

One strategy to restore vision in retinitis pigmentosa and age-related macular degeneration is cell replacement. Typically, patients lose vision when the outer retinal photoreceptor layer is lost, and so the therapeutic goal would be to restore vision at this stage of disease. It is not currently known if a degenerate retina lacking the outer nuclear layer of photoreceptor cells would allow the survival, maturation, and reconnection of replacement photoreceptors, as prior studies used hosts with a preexisting outer nuclear layer at the time of treatment. Here, using a murine model of severe human retinitis pigmentosa at a stage when no host rod cells remain, we show that transplanted rod precursors can reform an anatomically distinct and appropriately polarized outer nuclear layer. A trilaminar organization was returned to rd1 hosts that had only two retinal layers before treatment. The newly introduced precursors were able to resume their developmental program in the degenerate host niche to become mature rods with light-sensitive outer segments, reconnecting with host neurons downstream. Visual function, assayed in the same animals before and after transplantation, was restored in animals with zero rod function at baseline. These observations suggest that a cell therapy approach may reconstitute a light-sensitive cell layer de novo and hence repair a structurally damaged visual circuit. Rather than placing discrete photoreceptors among preexisting host outer retinal cells, total photoreceptor layer reconstruction may provide a clinically relevant model to investigate cell-based strategies for retinal repair.

Concepts: Retina, Eye, Photoreceptor cell, Visual system, Macular degeneration, Rod cell, Cone cell, Rhodopsin

169

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and age-related macular degeneration (AMD), share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are “rejuvenative” measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies.

Concepts: Medicine, Epidemiology, Disease, Death, Senescence, Neurology, Neurodegenerative disorders, Macular degeneration

167

BACKGROUND: This study was designed to assess the safety, tolerability, and efficacy of intravenous infusion of CA4P in patients with neovascular age-related macular degeneration (AMD). METHODS: Prospective, interventional, dose-escalation clinical trial. Eight patients with neovascular AMD refractory to at least 2 sessions of photodynamic therapy received CA4P at a dose of 27 or 36 mg/m2 as weekly intravenous infusion for 4 consecutive weeks. Safety was monitored by vital signs, ocular and physical examinations, electrocardiogram, routine laboratory tests, and collection of adverse events. Efficacy was assessed using retinal fluorescein angiography, optical coherence tomography, and best corrected visual acuity (BCVA). RESULTS: The most common adverse events were elevated blood pressure (46.7%), QTc prolongation (23.3%), elevated temperature (13.3%), and headache (10%), followed by nausea and eye injection (6.7%). There were no adverse events that were considered severe in intensity and none resulted in discontinuation of treatment. There was reduction of the excess foveal thickness by 24.15% at end of treatment period and by 43.75% at end of the two-month follow-up (p = 0.674 and 0.161, respectively). BCVA remained stable throughout the treatment and follow-up periods. CONCLUSIONS: The safety profile of intravenous CA4P was consistent with that reported in oncology trials of CA4P and with the class effects of vascular disruptive agents; however, the frequency of adverse events was different. There are evidences to suggest potential efficacy of CA4P in neovascular AMD. However, the level of systemic safety and efficacy indicates that systemic CA4P may not be suitable as an alternative monotherapy to current standard-of-care therapyTrial registration: ClinicalTrials.gov NCT01570790.

Concepts: Clinical trial, Optics, Blood pressure, Retina, Macular degeneration, Photodynamic therapy, Combretastatin A-4, Combretastatin A-4 phosphate

165

Evaluation of 1-year safety profile of intravitreal ranibizumab 0.5 mg in neovascular age-related macular degeneration (NV-AMD) within routine clinical practice.

Concepts: Macular degeneration, Ranibizumab

164

Lutein is selectively incorporated into the macula and brain. Lutein levels in the macula (macular pigment; MP) and the brain are related to better cognition. MP density (MPD) is a biomarker of brain lutein. Avocados are a bioavailable source of lutein. This study tests the effects of the intake of avocado on cognition. This was a six-month, randomized, controlled trial. Healthy subjects consumed one avocado (n = 20, 0.5 mg/day lutein, AV) vs. one potato or one cup of chickpeas (n = 20, 0 mg/day lutein, C). Serum lutein, MPD, and cognition were assessed at zero, three, and six months. Primary analyses were conducted according to intent-to-treat principles, with repeated-measures analysis. At six months, AV increased serum lutein levels by 25% from baseline (p = 0.001). C increased by 15% (p = 0.030). At six months, there was an increase in MPD from baseline in AV (p = 0.001) and no increase in C. For both groups, there was an improvement in memory and spatial working memory (p = 0.001; p = 0.032, respectively). For AV only there was improved sustained attention (p = 0.033), and the MPD increase was related to improved working memory and efficiency in approaching a problem (p = 0.036). Dietary recommendations including avocados may be an effective strategy for cognitive health.

Concepts: Better, Psychology, Brain, Cognitive psychology, Cognition, Hippocampus, Mind, Macular degeneration

163

Speed of processing is a particularly important characteristic of the visual system. Often a behavioral reaction to a visual stimulus must be faster than the conscious perception of that stimulus, as is the case with many sports (e.g., baseball). Visual psychophysics provides a relatively simple and precise means of measuring visual processing speed called the temporal contrast sensitivity function (tCSF). Past study has shown that macular pigment (a collection of xanthophylls, lutein (L), meso-zeaxanthin (MZ) and zeaxanthin (Z), found in the retina) optical density (MPOD) is positively correlated with the tCSF. In this study, we found similar correlations when testing 102 young healthy subjects. As a follow-up, we randomized 69 subjects to receive a placebo (n=15) or one of two L and Z supplements (n=54). MPOD and tCSF were measured psychophysically at baseline and 4months. Neither MPOD nor tCSF changed for the placebo condition, but both improved significantly as a result of supplementation. These results show that an intervention with L and Z can increase processing speed even in young healthy subjects.

Concepts: Retina, Photoreceptor cell, Visual perception, Visual system, Carotenoid, Zeaxanthin, Macular degeneration, Xanthophyll

161

To analyze the effect of baseline presence and height of pigment epithelial detachments (PEDs) on visual and anatomic outcomes at 24 months in patients with neovascular age-related macular degeneration (AMD) treated with ranibizumab.

Concepts: Melanin, Macular degeneration, Ranibizumab

155

Age-related macular degeneration (AMD) remains the most common cause of visual loss among subjects over 50 years of age in the developed world. The Irish Longitudinal study on Ageing (TILDA) is a population-based study of subjects aged 50 years or older, designed to investigate factors that influence ageing, and has enabled this investigation of the prevalence of AMD in the Republic of Ireland (ROI).

Concepts: United States, United Kingdom, Republic of Ireland, Republic, Ageing, Macular degeneration, Republic of China

147

Although retinal neurodegenerative conditions such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and retinal detachment have different etiologies and pathological characteristics, they also have many responses in common at the cellular level, including neural and glial remodeling. Structural changes in Müller cells, the large radial glia of the retina in retinal disease and injury have been well described, that of the retinal astrocytes remains less so. Using modern imaging technology to describe the structural remodeling of retinal astrocytes after retinal detachment is the focus of this paper. We present both a review of critical literature as well as novel work focusing on the responses of astrocytes following rhegmatogenous and serous retinal detachment. The mouse presents a convenient model system in which to study astrocyte reactivity since the Mϋller cell response is muted in comparison to other species thereby allowing better visualization of the astrocytes. We also show data from rat, cat, squirrel, and human retina demonstrating similarities and differences across species. Our data from immunolabeling and dye-filling experiments demonstrate previously undescribed morphological characteristics of normal astrocytes and changes induced by detachment. Astrocytes not only upregulate GFAP, but structurally remodel, becoming increasingly irregular in appearance, and often penetrating deep into neural retina. Understanding these responses, their consequences, and what drives them may prove to be an important component in improving visual outcome in a variety of therapeutic situations. Our data further supports the concept that astrocytes are important players in the retina’s overall response to injury and disease.

Concepts: Neuron, Retina, Retinitis pigmentosa, Diabetic retinopathy, Retinal detachment, Glial cells, Macular degeneration, Radial glia

136

To evaluate PDE5/6 inhibition with sildenafil to reduce choroidal ischemia and treat age-related macular degeneration.

Concepts: Macular degeneration