Discover the most talked about and latest scientific content & concepts.

Concept: Macronaria


Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian-Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America.

Concepts: Continent, Pacific Ocean, Cretaceous, Antarctica, Sauropoda, Dinosaur, Titanosaur, Macronaria


Titanosauria is an exceptionally diverse, globally-distributed clade of sauropod dinosaurs that includes the largest known land animals. Knowledge of titanosaurian pedal structure is critical to understanding the stance and locomotion of these enormous herbivores and, by extension, gigantic terrestrial vertebrates as a whole. However, completely preserved pedes are extremely rare among Titanosauria, especially as regards the truly giant members of the group. Here we describe Notocolossus gonzalezparejasi gen. et sp. nov. from the Upper Cretaceous of Mendoza Province, Argentina. With a powerfully-constructed humerus 1.76 m in length, Notocolossus is one of the largest known dinosaurs. Furthermore, the complete pes of the new taxon exhibits a strikingly compact, homogeneous metatarsus-seemingly adapted for bearing extraordinary weight-and truncated unguals, morphologies that are otherwise unknown in Sauropoda. The pes underwent a near-progressive reduction in the number of phalanges along the line to derived titanosaurs, eventually resulting in the reduced hind foot of these sauropods.

Concepts: Sauropoda, Dinosaur, Sauropodomorpha, Diplodocus, Saurischia, Titanosaur, Bruhathkayosaurus, Macronaria


Brachiosauridae is a clade of titanosauriform sauropod dinosaurs that includes the well-known Late Jurassic taxa Brachiosaurus and Giraffatitan. However, there is disagreement over the brachiosaurid affinities of most other taxa, and little consensus regarding the clade’s composition or inter-relationships. An unnamed partial sauropod skeleton was collected from middle-late Oxfordian (early Late Jurassic) deposits in Damparis, in the Jura department of eastern France, in 1934. Since its brief description in 1943, this specimen has been informally known in the literature as the ‘Damparis sauropod’ and ‘French Bothriospondylus’, and has been considered a brachiosaurid by most authors. If correctly identified, this would make the specimen the earliest known titanosauriform. Coupled with its relatively complete nature and the rarity of Oxfordian sauropod remains in general, this is an important specimen for understanding the early evolution of Titanosauriformes. Full preparation and description of this specimen, known from teeth, vertebrae and most of the appendicular skeleton of a single individual, recognises it as a distinct taxon: Vouivria damparisensis gen. et sp. nov. Phylogenetic analysis of a data matrix comprising 77 taxa (including all putative brachiosaurids) scored for 416 characters recovers a fairly well resolved Brachiosauridae. Vouivria is a basal brachiosaurid, confirming its status as the stratigraphically oldest known titanosauriform. Brachiosauridae consists of a paraphyletic array of Late Jurassic forms, with Europasaurus, Vouivria and Brachiosaurus recovered as successively more nested genera that lie outside of a clade comprising (Giraffatitan + Sonorasaurus) + (Lusotitan + (Cedarosaurus + Venenosaurus)). Abydosaurus forms an unresolved polytomy with the latter five taxa. The Early Cretaceous South American sauropod Padillasaurus was previously regarded as a brachiosaurid, but is here placed within Somphospondyli. A recent study contended that a number of characters used in a previous iteration of this data matrix are ‘biologically related’, and thus should be excluded from phylogenetic analysis. We demonstrate that almost all of these characters show variation between taxa, and implementation of sensitivity analyses, in which these characters are excluded, has no effect on tree topology or resolution. We argue that where there is morphological variation, this should be captured, rather than ignored. Unambiguous brachiosaurid remains are known only from the USA, western Europe and Africa, and the clade spanned the Late Jurassic through to the late Albian/early Cenomanian, with the last known occurrences all from the USA. Regardless of whether their absence from the Cretaceous of Europe, as well as other regions entirely, reflects regional extinctions and genuine absences, or sampling artefacts, brachiosaurids appear to have become globally extinct by the earliest Late Cretaceous.

Concepts: Cretaceous, Sauropoda, Dinosaur, Jurassic, Brachiosaurus, Macronaria, Brachiosauridae, Giraffatitan


A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian) Saltwick Formation of Whitby (Yorkshire), UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.

Concepts: United Kingdom, Vertebra, Sauropoda, Dinosaur, Sauropodomorpha, Titanosaur, Macronaria, Diplodocoidea


The sauropod dinosaur “Pelorosaurus” becklesii was named in 1852 on the basis of an associated left humerus, ulna, radius and skin impression from the Early Cretaceous (Berriasian-Valanginian) Hastings Beds Group, near Hastings, East Sussex, southeast England, United Kingdom. The taxonomy and nomenclature of this specimen have a complex history, but most recent workers have agreed that “P.” becklesii represents a distinct somphospondylan (or at least a titanosauriform) and is potentially the earliest titanosaur body fossil from Europe or even globally. The Hastings specimen is distinct from the approximately contemporaneous Pelorosaurus conybeari from Tilgate Forest, West Sussex. “P.” becklesii can be diagnosed on the basis of five autapomorphies, such as: a prominent anteriorly directed process projecting from the anteromedial corner of the distal humerus; the proximal end of the radius is widest anteroposteriorly along its lateral margin; and the unique combination of a robust ulna and slender radius. The new generic name Haestasaurus is therefore erected for “P.” becklesii. Three revised and six new fore limb characters (e.g. the presence/absence of condyle-like projections on the posterodistal margin of the radius) are discussed and added to three cladistic data sets for Sauropoda. Phylogenetic analysis confirms that Haestasaurus becklesii is a macronarian, but different data sets place this species either as a non-titanosauriform macronarian, or within a derived clade of titanosaurs that includes Malawisaurus and Saltasauridae. This uncertainty is probably caused by several factors, including the incompleteness of the Haestasaurus holotype and rampant homoplasy in fore limb characters. Haestasaurus most probably represents a basal macronarian that independently acquired the robust ulna, enlarged olecranon, and other states that have previously been regarded as synapomorphies of clades within Titanosauria. There is growing evidence that basal macronarian taxa survived into the Early Cretaceous of Europe and North America.

Concepts: Phylogenetics, Cladistics, Sauropoda, Dinosaur, Sauropodomorpha, Titanosaur, Macronaria, Crawley


The Late Cretaceous titanosauriform sauropod Huabeisaurus allocotus Pang and Cheng is known from teeth and much of the postcranial skeleton. Its completeness makes it an important taxon for integrating and interpreting anatomical observations from more fragmentary Cretaceous East Asian sauropods and for understanding titanosauriform evolution in general.

Concepts: Sauropoda, Dinosaur, Sauropodomorpha, Titanosaur, Camarasaurus, Macronaria


The study of a small sauropod trackway from the Late Cretaceous Fumanya tracksite (southern Pyrenees, Catalonia) and further comparisons with larger trackways from the same locality suggest a causative relationship between gait, gauge, and body proportions of the respective titanosaur trackmakers. This analysis, conducted in the context of scaling predictions and using geometric similarity and dynamic similarity hypotheses, reveals similar Froude numbers and relative stride lengths for both small and large trackmakers from Fumanya. Evidence for geometric similarity in these trackways suggests that titanosaurs of different sizes moved in a dynamically similar way, probably using an amble gait. The wide gauge condition reported in trackways of small and large titanosaurs implies that they possessed similar body (trunk and limbs) proportions despite large differences in body size. These results strengthen the hypothesis that titanosaurs possessed a distinctive suite of anatomical characteristics that are well reflected in their tracks and trackways.

Concepts: Scientific method, Difference, Sauropoda, Dinosaur, Titanosaur, Saltasaurus, Bruhathkayosaurus, Macronaria


A partial skeleton from the Little Snowy Mountains of central Montana is the first referable specimen of the Morrison Formation macronarian sauropod Camarasaurus. This specimen also represents the northernmost occurrence of a sauropod in the Morrison. Histological study indicates that, although the specimen is relatively small statured, it is skeletally mature; this further emphasizes that size is not a undeviating proxy to maturity in dinosaurs, and that morphologies associated with an individual’s age and stature may be more nebulous in sauropods.

Concepts: Sauropoda, Dinosaur, Sauropodomorpha, Diplodocus, Titanosaur, Brachiosaurus, Camarasaurus, Macronaria


New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks.

Concepts: Bird, Reptile, Sauropoda, Dinosaur, Sauropodomorpha, Saurischia, Theropoda, Macronaria


Titanosauriformes is a conspicuous and diverse group of sauropod dinosaurs that inhabited almost all land masses during Cretaceous times. Besides the diversity of forms, the clade comprises one of the largest land animals found so far, Argentinosaurus, as well as some of the smallest sauropods known to date, Europasaurus and Magyarosaurus. They are therefore good candidates for studies on body size trends such as the Cope’s rule, the tendency towards an increase in body size in an evolutionary lineage. We used statistical methods to assess body size changes under both phylogenetic and nonphylogenetic approaches to identify body size trends in Titanosauriformes. Femoral lengths were collected (or estimated from humeral length) from 46 titanosauriform species and used as a proxy for body size. Our findings show that there is no increase or decrease in titanosauriform body size with age along the Cretaceous and that negative changes in body size are more common than positive ones (although not statistically significant) for most of the titanosauriform subclades (e.g. Saltasaridae, Lithostrotia, Titanosauria and Somphospondyli). Therefore, Cope’s rule is not supported in titanosauriform evolution. Finally, we also found a trend towards a decrease of titanosauriform mean body size coupled with an increase in body size standard deviation, both supporting an increase in body size variation towards the end of Cretaceous.

Concepts: Statistics, Standard deviation, Sauropoda, Dinosaur, Sauropodomorpha, Titanosaur, Camarasaurus, Macronaria