Discover the most talked about and latest scientific content & concepts.

Concept: Mac OS X


We present Masai, a read mapper representing the state-of-the-art in terms of speed and accuracy. Our tool is an order of magnitude faster than RazerS 3 and mrFAST, 2-4 times faster and more accurate than Bowtie 2 and BWA. The novelties of our read mapper are filtration with approximate seeds and a method for multiple backtracking. Approximate seeds, compared with exact seeds, increase filtration specificity while preserving sensitivity. Multiple backtracking amortizes the cost of searching a large set of seeds by taking advantage of the repetitiveness of next-generation sequencing data. Combined together, these two methods significantly speed up approximate search on genomic data sets. Masai is implemented in C++ using the SeqAn library. The source code is distributed under the BSD license and binaries for Linux, Mac OS X and Windows can be freely downloaded from

Concepts: Java, Source code, Mac OS X, Operating system, Mac OS, Macintosh, Linux, FreeBSD


FreeSurfer is a popular software package to measure cortical thickness and volume of neuroanatomical structures. However, little if any is known about measurement reliability across various data processing conditions. Using a set of 30 anatomical T1-weighted 3T MRI scans, we investigated the effects of data processing variables such as FreeSurfer version (v4.3.1, v4.5.0, and v5.0.0), workstation (Macintosh and Hewlett-Packard), and Macintosh operating system version (OSX 10.5 and OSX 10.6). Significant differences were revealed between FreeSurfer version v5.0.0 and the two earlier versions. These differences were on average 8.8 ± 6.6% (range 1.3-64.0%) (volume) and 2.8 ± 1.3% (1.1-7.7%) (cortical thickness). About a factor two smaller differences were detected between Macintosh and Hewlett-Packard workstations and between OSX 10.5 and OSX 10.6. The observed differences are similar in magnitude as effect sizes reported in accuracy evaluations and neurodegenerative studies.The main conclusion is that in the context of an ongoing study, users are discouraged to update to a new major release of either FreeSurfer or operating system or to switch to a different type of workstation without repeating the analysis; results thus give a quantitative support to successive recommendations stated by FreeSurfer developers over the years. Moreover, in view of the large and significant cross-version differences, it is concluded that formal assessment of the accuracy of FreeSurfer is desirable.

Concepts: Measurement, Mac OS X, Apple Inc., QuickTime, Operating system, Mac OS, Mac OS X Snow Leopard, IMac


DIYABC is a software package for a comprehensive analysis of population history using approximate Bayesian computation (ABC) on DNA polymorphism data. Version 2.0 implements a number of new features and analytical methods. It allows: (i) the analysis of single nucleotide polymorphism (SNP) data at large number of loci, apart from microsatellite and DNA sequence data; (ii) efficient Bayesian model choice using linear discriminant analysis on summary statistics; and (iii) the serial launching of multiple post-processing analyses. DIYABC v2.0 also includes a user-friendly graphical interface with various new options. It can be run on three operating systems: GNU/Linux, Microsoft Windows and Apple Os X.

Concepts: Mathematical analysis, Mac OS X, Apple Inc., Operating system, Microsoft, Microsoft Windows, Graphical user interface, Linux


High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE’s implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.

Concepts: Mac OS X, Apple Inc., Operating system, Mac OS, Microsoft Windows, Macintosh, Mac OS 9, SheepShaver


Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates, providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, and signal visualization. In this unit, we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is open source software that can be run on Unix, Linux, or Mac OS X systems. © 2015 by John Wiley & Sons, Inc.

Concepts: Gene, Molecular biology, RNA, Unix, Open source, Mac OS X, Apple Inc., Operating system


The number of metagenomes is increasing rapidly. However, current methods for metagenomic analysis are limited by their capability for in-depth data mining among a large number of microbiome each of which carries a complex community structure. Moreover, the complexity of configuring and operating computational pipeline also hinders efficient data processing for the end users. In this work we introduce Parallel-META 3, a comprehensive and fully automatic computational toolkit for rapid data mining among metagenomic datasets, with advanced features including 16S rRNA extraction for shotgun sequences, 16S rRNA copy number calibration, 16S rRNA based functional prediction, diversity statistics, bio-marker selection, interaction network construction, vector-graph-based visualization and parallel computing. Application of Parallel-META 3 on 5,337 samples with 1,117,555,208 sequences from diverse studies and platforms showed it could produce similar results as QIIME and PICRUSt with much faster speed and lower memory usage, which demonstrates its ability to unravel the taxonomical and functional dynamics patterns across large datasets and elucidate ecological links between microbiome and the environment. Parallel-META 3 is implemented in C/C++ and R, and integrated into an executive package for rapid installation and easy access under Linux and Mac OS X. Both binary and source code packages are available at

Concepts: Ribosomal RNA, Data, 16S ribosomal RNA, Java, Source code, Mac OS X, Operating system, Mac OS


Motivation: Storing, transmitting, and archiving data produced by next generation sequencing is a significant computational burden. New compression techniques tailored to short-read sequence data are needed. Results: We present here an approach to compression that reduces the difficulty of managing large-scale sequencing data. Our novel approach sits between pure reference-based compression and reference-free compression and combines much of the benefit of reference-based approaches with the flexibility of de novo encoding. Our method, called path encoding, draws a connection between storing paths in de Bruijn graphs and context-dependent arithmetic coding. Supporting this method is a system to compactly store sets of kmers that is of independent interest. We are able to encode RNA-seq reads using 3% - 11% of the space of the sequence in raw FASTA files, which is on average more than 34% smaller than competing approaches. We also show that even if the reference is very poorly matched to the reads that are being encoded, good compression can still be achieved. Availability and implementation: Source code and binaries freely available for download at, implemented in Go and supported on Linux and Mac OS X. Contact:

Concepts: Java, Mac OS X, Operating system, Mac OS, Macintosh, Linux, De Bruijn graph, De Bruijn sequence


Accurate multiple sequence alignment is central to bioinformatics and molecular evolutionary analyses. Although sophisticated sequence alignment programs are available, manual adjustments are often required to improve alignment quality. Unfortunately, few programs offer a simple and intuitive way to edit sequence alignments.

Concepts: DNA, Bioinformatics, Mac OS X, Apple Inc., Operating system, Mac OS, Sequence alignment, Multiple sequence alignment


We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available.

Concepts: Java, Mac OS X, Operating system, Mac OS, Macintosh, Graphical user interface, Linux, Web server


We present the latest version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, MEGA has been optimized for use on 64-bit computing systems for analyzing bigger datasets. Researchers can now explore and analyze tens of thousands of sequences in MEGA. The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit MEGA is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OSX. The command line MEGA is available as native applications for Windows, Linux, and Mac OSX. They are intended for use in high-throughput and scripted analysis. Both versions are available fromwww.megasoftware.netfree of charge.

Concepts: User interface, Mac OS X, Apple Inc., Operating system, Microsoft Windows, Macintosh, Graphical user interface, Linux