SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Lysosome

169

COPI mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER) and within the Golgi stack, sorting transmembrane proteins bearing C-terminal KKxx or KxKxx motifs. The structure of KxKxx motifs bound to the N-terminal WD-repeat domain of β'-COP identifies electrostatic contacts between the motif and complementary patches at the center of the β'-COP propeller. An absolute requirement of a two-residue spacing between the terminal carboxylate group and first lysine residue results from interactions of carbonyl groups in the motif backbone with basic side chains of β'-COP. Similar interactions are proposed to mediate binding of KKxx motifs by the homologous α-COP domain. Mutation of key interacting residues in either domain or in their cognate motifs abolishes in vitro binding and results in mistrafficking of dilysine-containing cargo in yeast without compromising cell viability. Flexibility between β'-COP WD-repeat domains and the location of cargo binding have implications for COPI coat assembly.

Concepts: Protein, Cell, Cell membrane, Golgi apparatus, Secretion, Endoplasmic reticulum, Glycosylation, Lysosome

165

To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson’s disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.

Concepts: DNA, Protein, Enzyme, Lysosomal storage disease, Parkinson's disease, Lysosome, Gaucher's disease, Glucocerebrosidase

42

Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes ‘host’ multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1’s ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.

Concepts: DNA, Oxygen, Cell, Mitochondrion, Organelle, Oxidative phosphorylation, Reactive oxygen species, Lysosome

42

To characterize key clinical manifestations of lysosomal acid lipase deficiency (LAL D) in children and adults.

Concepts: Lysosome, Lipase, Lysosomal lipase

28

Mucopolysaccharidosis I (MPS I) is a metabolic disorder caused by α-L-Iduronidase (IDUA) deficiency, resulting in lysosomal accumulation of heparan (HS) and dermatan sulphate (DS). This has been reported in microglia, yet currently the effect of IDUA deficiency on T cells and dendritic cells (DC) and their functionality in disease pathogenesis remains unclear.

Concepts: Mitochondrion, Lysosomal storage disease, Dendritic cell, Lysosome, Dermatan sulfate, Mucopolysaccharidosis, Hunter syndrome, Hurler syndrome

28

Rlyso, a highly selective and sensitive pH sensor, can stain lysosomes with a novel lysosome-locating group, methylcarbitol. Rlyso was successfully used to detect lysosomal pH changes during apoptosis or induced by chloroquine while avoiding the “alkalizing effect” on lysosomes of current lysosomal probes with nitrogen-containing sidechains.

Concepts: Phagocytosis, PH, Lysosome, Vesicle

27

T-cell protein tyrosine phosphatase, TCPTP, is a ubiquitously expressed non-receptor type tyrosine phosphatase. There are two splice variants of TCPTP, TC48 and TC45, which differ in their sub-cellular localizations and functions. TC45 is a nuclear protein, which has both nuclear and cytoplasmic substrates, and is involved in many signaling events including endocytic recycling of platelet-derived growth factor β-receptor. TC48 is a predominantly endoplasmic reticulum (ER)-localizing protein, which dephosphorylates some of the substrates of TC45 at the ER. However, recently few specific substrates for TC48 have been identified. These include C3G (RapGEF1), syntaxin 17 and BCR-Abl. TC48 moves from the ER to post-ER compartments, the ER-Golgi intermediate compartment (ERGIC) and Golgi, and it is retrieved back to the ER. The retrieval of ER proteins from post-ER compartments is generally believed as a mechanism of targeting these proteins to the ER. However, it is possible that this shuttling of TC48 serves to regulate signaling in the early secretory pathway. For example, TC48 dephosphorylates phosphorylated C3G at the Golgi and inhibits neurite outgrowth. TC48 interacts with and dephosphorylates syntaxin 17, which is an ER and ERGIC-localizing protein involved in vesicle transport. A yeast two-hybrid screen identified several unique interacting partners of TC48 belonging to two groups - proteins involved in vesicle trafficking and proteins involved in cell adhesion. These interacting proteins could be substrates or regulators of TC48 function and localization. Thus, the role of TC48 seems to be more diverse, which is still to be explored.

Concepts: Protein, Cell nucleus, Cell, Cytosol, Endoplasmic reticulum, Cell biology, Two-hybrid screening, Lysosome

26

What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo.

Concepts: Cell, Organism, Cytosol, Golgi apparatus, Organelle, Endoplasmic reticulum, Lysosome, Protein targeting

25

Although largely overlooked relative to the process of phagophore formation, the mechanism through which autophagosomes fuse with lysosomes is a critical aspect of macroautophagy that is not fully understood. In particular, this step must be carefully regulated to prevent premature fusion of an incomplete autophagosome (that is, a phagophore) with a lysosome, because such an event would not allow access of the partially sequestered cargo to the lysosome lumen. The identification of the autophagosome-associated SNARE protein STX17 (syntaxin 17) provided some clue in the understanding of this process. STX17 is recruited specifically to mature autophagosomes, and functions in mediating autophagosome-lysosome fusion by forming a complex with the Qbc SNARE SNAP29 and the lysosomal R-SNARE VAMP8. Additionally, STX17 plays a role in the early events of autophagy by interacting with the phosphatidylinositol 3-kinase complex component ATG14. Upon autophagy induction STX17 is strictly required for ATG14 recruitment to the ER-mitochondria contact sites, a critical step for the assembly of the phagophore and therefore for autophagosome formation. In their recent paper, Diao and collaborators now show that the ATG14-STX17-SNAP29 interaction mediates autophagosome-lysosome tethering and fusion events, thus revealing a novel function of ATG14 in the later steps of the autophagy pathway.

Concepts: Cell, Golgi apparatus, Organelle, Endoplasmic reticulum, Emergence, Lysosome, SNAP-25, Synaptotagmin

25

The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-½ double-deficient fibroblasts as well as in LAMP-½ knock-down cells C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harbored more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.

Concepts: Cell, Bacteria, Cell membrane, Organelle, Coxiella burnetii, Q fever, Proteobacteria, Lysosome