Discover the most talked about and latest scientific content & concepts.

Concept: Lysis


Bacteriophages are used widely in many fields, and phages with high purity and infectivity are required. Convective interaction media (CIM) methacrylate monoliths were used for the purification of mycobacteriophage D29. The lytic phages D29 from bacterial lysate were purified primarily by polyethylene glycol 8000 or ammonium sulphate, and then the resulting phages were passed through the CIM monolithic columns for further purification. After the whole purification process, more than 99% of the total proteins were removed irrespective which primary purification method was used. The total recovery rates of viable phages were around 10-30%. Comparable results were obtained when the purification method was scaled-up from a 0.34mL CIM DEAE (diethylamine) monolithic disk to an 8mL CIM DEAE monolithic column.

Concepts: Crude lysate, DNA, Chromatography, Lysogenic cycle, Bacteria, Virus, Lysis, Bacteriophage


Microbiome dysbiosis caused by antibiotic treatment has been associated with both the susceptibility and relapsing of Clostridium difficile infection (CDI). Bacteriophage (phage) therapy offers target specificity and dose amplification in situ, but few studies have focused on their use in CDI treatment. This mainly reflects the lack of strictly virulent phages that target this pathogen. Whilst it is widely accepted that temperate phages are unsuitable for therapeutic purposes due to their transduction potential, analysis of seven C. difficile phages confirmed that this impact could be curtailed by the application of multiple phage types. Here, host range analysis of six myoviruses and one siphovirus was conducted on 80 strains representing 21 major epidemic and clinically severe ribotypes. The phages had complementary coverage; lysing 18 and 62 of the ribotypes and strains tested respectively. Single-phage treatments of ribotypes 076, 014/020 and 027 strains showed an initial reduction in bacterial load followed by emergence of phage-resistant colonies. However, these colonies remained susceptible to phage infection with an unrelated phage. In contrast, specific phage combinations caused complete lysis of C. difficile in vitro and prevented the appearance of resistant/lysogenic clones. Using a hamster model, oral delivery of optimized phage combinations resulted in reduced C. difficile colonization 36 h post-infection. Interestingly, free phages were recovered from the bowel at this time. In a challenge model of the disease, phage treatment delayed the onset of symptoms by 33 h compared to untreated animals. These data demonstrate the therapeutic potential of phage combinations to treat CDI.

Concepts: In vivo, In vitro, Lysis, Antibiotic, Virus, Bacteria, Bacteriophage, Clostridium difficile


Multi-drug resistant (MDR) enteric bacteria are of increasing global concern. A clonal group, Escherichia coli sequence type (ST) 131, harbors both MDR and a deadly complement of virulence factors. Patients with an immunocompromised system are at high risk of infections with these E. coli and there is strong epidemiologic evidence that the human intestinal tract, as well as household pets, may be a reservoir. Here, we examine if phages are an effective treatment strategy against this clonal group in murine models of bacteremia that recapitulate clinical infections. Bacteriophages isolated from known E. coli reservoirs lyse a diverse array of MDR ST131 clinical isolates. Phage HP3 reduced E. coli levels and improved health scores for mice infected with two distinct ST131 strains. Efficacy was correlated to in vitro lysis ability by the infecting phage and the level of virulence of the E. coli strain. Importantly, it is also demonstrated that E. coli bacteremia initiated from translocation across the intestinal tract in an immunocompromised host is substantially reduced after phage treatment. This study demonstrates that phage, isolated from the environment and with little experimental manipulation, can be effective in combating even the most serious of infections by E. coli “superbugs”.

Concepts: Lysis, Phage therapy, Bacteriophage, Virus, Microbiology, Immune system, Escherichia coli, Bacteria


Bacteriophages are viruses that infect bacteria, and they are found everywhere their bacterial hosts are present, including the human body. To explore the presence of phages in clinical samples, we assessed 65 clinical samples (blood, ascitic fluid, urine, cerebrospinal fluid, and serum). Infectious tailed phages were detected in >45% of ascitic fluid and urine samples. Three examples of phage interference with bacterial isolation were observed. Phages prevented the confluent bacterial growth required for an antibiogram assay when the inoculum was taken from an agar plate containing lysis plaques, but not when taken from a single colony in a phage-free area. In addition, bacteria were isolated directly from ascitic fluid, but not after liquid enrichment culture of the same samples, since phage propagation lysed the bacteria. Lastly, Gram-negative bacilli observed in a urine sample did not grow on agar plates due to the high densities of infectious phages in the sample.

Concepts: DNA, Growth medium, Genome, Lysis, Bacteria, Virus, Bacteriophage, Microbiology


Bacteriophages (phages) typically exhibit a narrow host range, yet they tremendously impact horizontal gene transfer (HGT). Here, we investigate phage dynamics in communities harboring phage-resistant ® and sensitive (S) bacteria, a common scenario in nature. Using Bacillus subtilis and its lytic phage SPP1, we demonstrate that R cells, lacking SPP1 receptor, can be lysed by SPP1 when co-cultured with S cells. This unanticipated lysis was triggered in part by phage lytic enzymes released from nearby infected cells. Strikingly, we discovered that occasionally phages can invade R cells, a phenomenon we termed acquisition of sensitivity (ASEN). We found that ASEN is mediated by R cells transiently gaining phage attachment molecules from neighboring S cells and provide evidence that this molecular exchange is driven by membrane vesicles. Exchange of phage attachment molecules could even occur in an interspecies fashion, enabling phage adsorption to non-host species, providing an unexplored route for HGT. VIDEO ABSTRACT.

Concepts: Genome, Microbiology, Bacteriophage, Gene, Virus, DNA, Lysis, Bacteria


In order for Staphylococcus aureus to thrive inside the mammalian host, the bacterium has to overcome iron scarcity. S. aureus is thought to produce toxins that lyse erythrocytes, releasing hemoglobin, the most abundant iron source in mammals. Here we identify the Duffy antigen receptor for chemokines (DARC) as the receptor for the S. aureus hemolytic leukocidins LukED and HlgAB. By assessing human erythrocytes with DARC polymorphisms, we determined that HlgAB- and LukED-mediated lysis directly relates to DARC expression. DARC is required for S. aureus-mediated lysis of human erythrocytes, and DARC overexpression is sufficient to render cells susceptible to toxin-mediated lysis. HlgA and LukE bind directly to DARC through different regions, and by targeting DARC, HlgAB and LukED support S. aureus growth in a hemoglobin-acquisition-dependent manner. These findings elucidate how S. aureus targets and lyses erythrocytes to release one of the scarcest nutrients within the mammalian host.

Concepts: Hemolysis, Hemoglobin, Lysis, Bacteria, Protein, Duffy antigen system, Immune system, Red blood cell


To isolate and characterise phage which could lyse P. acnes and to formulate the phage into a delivery form for potential application in topical treatment of acne infection.

Concepts: Bacteriophage, Virus, Bacteria, Lysis, Microbiology, Propionibacterium, Acne vulgaris, Propionibacterium acnes


Pierce’s Disease (PD) of grapevines, caused by Xylella fastidiosa subsp. fastidiosa (Xf), is a limiting factor in the cultivation of grapevines in the US. There are presently no effective control methods to prevent or treat PD. The therapeutic and prophylactic efficacy of a phage cocktail composed of four virulent (lytic) phages was evaluated for control of PD. Xf levels in grapevines were significantly reduced in therapeutically or prophylactically treated grapevines. PD symptoms ceased to progress one week post-therapeutic treatment and symptoms were not observed in prophylactically treated grapevines. Cocktail phage levels increased in grapevines in the presence of the host. No in planta phage-resistant Xf isolates were obtained. Moreover, Xf mutants selected for phage resistance in vitro did not cause PD symptoms. Our results indicate that phages have great potential for biocontrol of PD and other economically important diseases caused by Xylella.

Concepts: Microbiology, Symptom, Lysogenic cycle, Lysis, Phage therapy, Infectious disease, Xylella fastidiosa, Disease


Two lytic phages, vB_SenM-PA13076 (PA13076) and vB_SenM-PC2184 (PC2184), were isolated from chicken sewage and characterized with host strains Salmonella Enteritidis (SE) ATCC13076 and CVCC2184, respectively. Transmission electron microscopy revealed that they belonged to the family Myoviridae. The lytic abilities of these two phages in liquid culture showed 104 multiplicity of infection (MOI) was the best in inhibiting bacteria, with PC2184 exhibiting more activity than PA13076. The two phages exhibited broad host range within the genus Salmonella. Phage PA13076 and PC2184 had a lytic effect on 222 (71.4%) and 298 (95.8%) of the 311 epidemic Salmonella isolates, respectively. We tested the effectiveness of phage PA13076 and PC2184 as well as a cocktail combination of both in three different foods (chicken breast, pasteurized whole milk and Chinese cabbage) contaminated with SE. Samples were spiked with 1 × 10(4) CFU individual SE or a mixture of strains (ATCC13076 and CVCC2184), then treated with 1 × 10(8) PFU individual phage or a two phage cocktail, and incubated at 4 °C or 25 °C for 5 h. In general, the inhibitory effect of phage and phage cocktail was better at 4 °C than that at 25 °C, whereas the opposite result was observed in Chinese cabbage, and phage cocktail was better than either single phage. A significant reduction in bacterial numbers (1.5-4 log CFU/sample, p < 0.05) was observed in all tested foods. The two phages on the three food samples were relatively stable, especially at 4 ºC, with the phages exhibiting the greatest stability in milk. Our research shows that our phages have potential effectiveness as a bio-control agent of Salmonella in foods.

Concepts: Lysogenic cycle, Lysis, Milk, Bacteriophages, Bacteria, Bacteriophage, Microbiology


Mycobacterium tuberculosis and Mycobacterium marinum are thought to exert virulence, in part, through their ability to lyse host cell membranes. The type VII secretion system ESX-1 [6-kDa early secretory antigenic target (ESAT-6) secretion system 1] is required for both virulence and host cell membrane lysis. Both activities are attributed to the pore-forming activity of the ESX-1-secreted substrate ESAT-6 because multiple studies have reported that recombinant ESAT-6 lyses eukaryotic membranes. We too find ESX-1 of M. tuberculosis and M. marinum lyses host cell membranes. However, we find that recombinant ESAT-6 does not lyse cell membranes. The lytic activity previously attributed to ESAT-6 is due to residual detergent in the preparations. We report here that ESX-1-dependent cell membrane lysis is contact dependent and accompanied by gross membrane disruptions rather than discrete pores. ESX-1-mediated lysis is also morphologically distinct from the contact-dependent lysis of other bacterial secretion systems. Our findings suggest redirection of research to understand the mechanism of ESX-1-mediated lysis.

Concepts: Tuberculosis, Mycobacterium tuberculosis, Secretion, Cell, Bacteria, Cell membrane, Lysis, Mycobacterium