SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Low Earth orbit

164

The Chinese BeiDou system (BDS), having different types of satellites, is an important addition to the ever growing system of Global Navigation Satellite Systems (GNSS). It consists of Geostationary Earth Orbit (GEO) satellites, Inclined Geosynchronous Satellite Orbit (IGSO) satellites and Medium Earth Orbit (MEO) satellites. This paper investigates the receiver-dependent bias between these satellite types, for which we coined the name “inter-satellite-type bias” (ISTB), and its impact on mixed receiver attitude determination. Assuming different receiver types may have different delays/biases for different satellite types, we model the differential ISTBs among three BeiDou satellite types and investigate their existence and their impact on mixed receiver attitude determination. Our analyses using the real data sets from Curtin’s GNSS array consisting of different types of BeiDou enabled receivers and series of zero-baseline experiments with BeiDou-enabled receivers reveal the existence of non-zero ISTBs between different BeiDou satellite types. We then analyse the impact of these biases on BeiDou-only attitude determination using the constrained (C-)LAMBDA method, which exploits the knowledge of baseline length. Results demonstrate that these biases could seriously affect the integer ambiguity resolution for attitude determination using mixed receiver types and that a priori correction of these biases will dramatically improve the success rate.

Concepts: Communications satellite, Global navigation satellite system, Satellite, Satellite navigation systems, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits

0

For GPS medium-long baseline real-time kinematic (RTK) positioning, the troposphere parameter is introduced along with coordinates, and the model is ill-conditioned due to its strong correlation with the height parameter. For BeiDou Navigation Satellite System (BDS), additional difficulties occur due to its special satellite constellation. In fact, relative zenith troposphere delay (RZTD) derived from high-precision empirical zenith troposphere models can be introduced. Thus, the model strength can be improved, which is also called the RZTD-constrained RTK model. In this contribution, we first analyze the factors affecting the precision of BDS medium-long baseline RTK; thereafter, 15 baselines ranging from 38 km to 167 km in different troposphere conditions are processed to assess the performance of RZTD-constrained RTK. Results show that the troposphere parameter is difficult to distinguish from the height component, even with long time filtering for BDS-only RTK. Due to the lack of variation in geometry for the BDS geostationary Earth orbit satellite, the long convergence time of ambiguity parameters may reduce the height precision of GPS/BDS-combined RTK in the initial period. When the RZTD-constrained model was used in BDS and GPS/BDS-combined situations compared with the traditional RTK, the standard deviation of the height component for the fixed solution was reduced by 52.4% and 34.0%, respectively.

Concepts: Navigation, Global Positioning System, Communications satellite, Geodesy, Satellite, Low Earth orbit, Geosynchronous orbit, Arthur C. Clarke

0

The orbital maneuvers of Global Navigation Satellite System (GNSS) Constellations will decrease the performance and accuracy of positioning, navigation, and timing (PNT). Because satellites in the Chinese BeiDou Navigation Satellite System (BDS) are in Geostationary Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO), maneuvers occur more frequently. Also, the precise start moment of the BDS satellites' orbit maneuvering cannot be obtained by common users. This paper presented an improved real-time detecting method for BDS satellites' orbit maneuvering and anomalies with higher timeliness and higher accuracy. The main contributions to this improvement are as follows: (1) instead of the previous two-steps method, a new one-step method with higher accuracy is proposed to determine the start moment and the pseudo random noise code (PRN) of the satellite orbit maneuvering in that time; (2) BDS Medium Earth Orbit (MEO) orbital maneuvers are firstly detected according to the proposed selection strategy for the stations; and (3) the classified non-maneuvering anomalies are detected by a new median robust method using the weak anomaly detection factor and the strong anomaly detection factor. The data from the Multi-GNSS Experiment (MGEX) in 2017 was used for experimental analysis. The experimental results and analysis showed that the start moment of orbital maneuvers and the period of non-maneuver anomalies can be determined more accurately in real-time. When orbital maneuvers and anomalies occur, the proposed method improved the data utilization for 91 and 95 min in 2017.

Concepts: Communications satellite, Satellite, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits, Synchronous orbit

0

The current constellation of the BeiDou Navigation Satellite System (BDS) consists of five geostationary earth orbit (GEO) satellites, five inclined geosynchronous satellite orbit (IGSO) satellites, and four medium earth orbit (MEO) satellites. The advantage of using GEO satellites to monitor the ionosphereis the almost motionless ionospheric pierce point (IPP), which is analyzed in comparison with the MEO and IGSO satellites. The results from the analysis of the observations using eight tracking sites indicate that the ionospheric total electron content (TEC) sequence derived from each GEO satellite at their respective fixed IPPs is always continuous. The precision of calculated vertical TEC (VTEC) using BDS B1/B2, B1/B3, and B2/B3 dual-frequency combinationsis compared and analyzed. The VTEC12precision based on the B1/B2 dual-frequency measurements using the smoothed code and the raw code combination is 0.69 and 5.54 TECU, respectively, which is slightly higher than VTEC13and much higher than VTEC23. Furthermore, the ionospheric monitoring results of site JFNG in the northern hemisphere, and CUT0 in the southern hemisphere during the period from 1 January to 31 December 2015 are presented and discussed briefly.

Concepts: Communications satellite, Satellite, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits, Geosynchronous satellite, Synchronous orbit

0

An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20-25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution.

Concepts: Communications satellite, Satellite, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits, Geosynchronous satellite, Synchronous orbit

0

Global navigation satellite systems (GNSS) are widely used in low Earth orbit (LEO) satellite navigation; however, their availability is poor for users in medium Earth orbits (MEO), and high Earth orbits (HEO). With the increasing demand for navigation from MEO and HEO users, the inadequate coverage of GNSS has emerged. Inter-satellite links (ISLs) are used for ranging and communication between navigation satellites and can also serve space users that are outside the navigation constellation. This paper aims to summarize their application method and analyze their service performance. The mathematical model of visibility is proposed and then the availability of time division ISLs is analyzed based on global grid points. The BeiDou navigation constellation is used as an example for numerical simulation. Simulation results show that the availability can be enhanced by scheduling more satellites and larger beams, while the presence of more users lowers the availability. The availability of navigation signals will be strengthened when combined with the signals from the ISLs. ISLs can improve the space service volume (SSV) of navigation constellations, and are therefore a promising method for navigation in MEO/HEO spacecraft.

Concepts: Global Positioning System, Spacecraft, Global navigation satellite system, Satellite, Satellite navigation systems, Low Earth orbit, Geocentric orbit

0

Satellite laser ranging operating at 1064 nm wavelength using superconducting nanowire single-photon detectors (SNSPDs) is successfully demonstrated. A SNSPD with an intrinsic quantum efficiency of 80% and a dark count rate of 100 cps at 1064 nm wavelength is developed and introduced to Yunnan Observatory in China. With improved closed-loop telescope systems (field of view of about 26), satellites including Cryosat, Ajisai, and Glonass with ranges of 1600 km, 3100 km, and 19,500 km, respectively, are experimentally ranged with mean echo rates of 1200/min, 4200/min, and 320/min, respectively. To the best of our knowledge, this is the first demonstration of laser ranging for satellites using SNSPDs at 1064 nm wavelength. Theoretical analysis of the detection efficiency and the mean echo rate for typical satellites indicate that it is possible for a SNSPD to range satellites from low Earth orbit to geostationary Earth orbit.

Concepts: Communications satellite, Satellite, Space debris, LIDAR, Low Earth orbit, Geosynchronous orbit, Arthur C. Clarke, Satellites

0

The Beidou navigation satellite system is a very important sensor for positioning in the Asia-Pacific region. The Beidou inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites have been analysed in some studies previously conducted by other researchers; this paper seeks to gain more insight regarding the geostationary earth orbit (GEO) satellites. Employing correlation analysis, Fourier transformation and wavelet decomposition, we validate whether there is a systematic bias in their multipath combinations. These biases can be observed clearly in satellites C01, C02 and C04 and have a great correlation with time series instead of elevation, being significantly different from those of the Beidou IGSO and MEO satellites. We propose a correction model to mitigate this bias based on its daily periodicity characteristic. After the model has been applied, the performance of the positioning estimations of the eight stations distributed in the Asia-Pacific region is evaluated and compared. The results show that residuals of multipath series behaves random noise; for the single point positioning (SPP) and precise point positioning (PPP) approaches, the positioning accuracy in the upward direction can be improved by 8 cm and 6 mm, respectively, and by 2 cm and 4 mm, respectively, for the horizontal component.

Concepts: Communications satellite, Satellite, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits, Geosynchronous satellite, Synchronous orbit

0

Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

Concepts: Global Positioning System, Communications satellite, Satellite, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits, Geosynchronous satellite

0

The R2CGGTTS software tool developed at the Royal Observatory of Belgium (ROB) to provide clock solutions in the standard CGGTTS (Common GNSS Generic Time Transfer Standard) has been extended to BeiDou Navigation Satellite System (BDS). The BDS includes satellites in three different orbits: Medium Earth Orbit (MEO), Inclined Geosynchronous Satellite Orbit (IGSO) and Geostationary Earth Orbit (GEO). This paper presents first results obtained with this upgraded software, and a comparison between Common View (CV) time transfer solutions obtained with either BDS, or GPS or Galileo. These preliminary results indicate that the BeiDou MEO satellites give time transfer results with a higher noise than the GPS results. This additional noise is shown to be due to some elevation-dependent delay in the BDS code measurements. Some biases were furthermore pointed out between the CV results obtained with the different BeiDou MEO satellites when the receivers used in the two stations are of different make. These biases may reach some nanoseconds, and find most probably their origin in the receiver hardware or firmware. It is shown additionally that using the BeiDou IGSO satellites and the GEO satellites, although increasing the number of observations, especially in the Asia-Pacific region, introduces a significant time transfer noise in the CV results.

Concepts: Global Positioning System, Satellite, Low Earth orbit, Geostationary orbit, Geosynchronous orbit, Earth orbits, Geosynchronous satellite