Discover the most talked about and latest scientific content & concepts.

Concept: Lotka–Volterra equation


While foraging theory predicts that predatory responses should be determined by the energy content and size of prey, it is becoming increasingly clear that carnivores regulate their intake of specific nutrients. We tested the hypothesis that prey nutrient composition and predator nutritional history affects foraging intensity, consumption, and prey selection by the wolf spider, Pardosa milvina. By altering the rearing environment for fruit flies, Drosophila melanogaster, we produced high quality flies containing more nitrogen and protein and less lipid than low quality fruit flies. In one experiment, we quantified the proportion of flies taken and consumption across a range of densities of either high or low quality flies and, in a second experiment, we determined the prey capture and consumption of spiders that had been maintained on contrasting diets prior to testing. In both cases, the proportion of prey captured declined with increasing prey density, which characterizes the Type II functional response that is typical of wolf spiders. Spiders with similar nutritional histories killed similar numbers of each prey type but consumed more of the low quality prey. Spiders provided high quality prey in the weeks prior to testing killed more prey than those on the low quality diet but there was no effect of prior diet on consumption. In the third experiment, spiders were maintained on contrasting diets for three weeks and then allowed to select from a mixture of high and low quality prey. Interestingly, feeding history affected prey preferences: spiders that had been on a low quality diet showed no preference but those on the high quality diet selected high quality flies from the mixture. Our results suggest that, even when prey size and species identity are controlled, the nutritional experience of the predator as well as the specific content of the prey shapes predator-prey interactions.

Concepts: Insect, Predation, Lotka–Volterra equation, Drosophila, Optimal foraging theory, Spider, Carnivore, Wolf spider


Toothed whales and bats have independently evolved biosonar systems to navigate and locate and catch prey. Such active sensing allows them to operate in darkness, but with the potential cost of warning prey by the emission of intense ultrasonic signals. At least six orders of nocturnal insects have independently evolved ears sensitive to ultrasound and exhibit evasive maneuvers when exposed to bat calls. Among aquatic prey on the other hand, the ability to detect and avoid ultrasound emitting predators seems to be limited to only one subfamily of Clupeidae: the Alosinae (shad and menhaden). These differences are likely rooted in the different physical properties of air and water where cuticular mechanoreceptors have been adapted to serve as ultrasound sensitive ears, whereas ultrasound detection in water have called for sensory cells mechanically connected to highly specialized gas volumes that can oscillate at high frequencies. In addition, there are most likely differences in the risk of predation between insects and fish from echolocating predators. The selection pressure among insects for evolving ultrasound sensitive ears is high, because essentially all nocturnal predation on flying insects stems from echolocating bats. In the interaction between toothed whales and their prey the selection pressure seems weaker, because toothed whales are by no means the only marine predators placing a selection pressure on their prey to evolve specific means to detect and avoid them. Toothed whales can generate extremely intense sound pressure levels, and it has been suggested that they may use these to debilitate prey. Recent experiments, however, show that neither fish with swim bladders, nor squid are debilitated by such signals. This strongly suggests that the production of high amplitude ultrasonic clicks serve the function of improving the detection range of the toothed whale biosonar system rather than debilitation of prey.

Concepts: Evolution, Insect, Predation, Lotka–Volterra equation, Ultrasound, Animal echolocation, Sound, Bat


We study the dynamics of a predator-prey system where predators fight for captured prey besides searching for and handling (and digestion) of the prey. Fighting for prey is modelled by a continuous time hawk-dove game dynamics where the gain depends on the amount of disputed prey while the costs for fighting is constant per fighting event. The strategy of the predator-population is quantified by a trait being the proportion of the number of predator-individuals playing hawk tactics. The dynamics of the trait is described by two models of adaptation: the replicator dynamics (RD) and the adaptive dynamics (AD). In the RD-approach a variant individual with an adapted trait value changes the population’s strategy, and consequently its trait value, only when its payoff is larger than the population average. In the AD-approach successful replacement of the resident population after invasion of a rare variant population with an adapted trait value is a step in a sequence changing the population’s strategy, and hence its trait value. The main aim is to compare the consequences of the two adaptation models. In an equilibrium predator-prey system this will lead to convergence to a neutral singular strategy, while in the oscillatory system to a continuous singular strategy where in this endpoint the resident population is not invasible by any variant population. In equilibrium (low prey carrying capacity) RD and AD-approach give the same results, however not always in a periodically oscillating system (high prey carrying-capacity) where the trait is density-dependent. For low costs the predator population is monomorphic (only hawks) while for high costs dimorphic (hawks and doves). These results illustrate that intra-specific trait dynamics matters in predator-prey dynamics.

Concepts: Game theory, Population, Predation, Ecology, Lotka–Volterra equation, Cat, Hunting, Carrying capacity


Predation plays a central role in the lives of most organisms. Predators must find and subdue prey to survive and reproduce, whereas prey must avoid predators to do the same. The resultant antagonistic coevolution often leads to extreme adaptations in both parties. Few examples capture the imagination like a rapid strike from a venomous snake. However, almost nothing is known about strike performance of viperid snakes under natural conditions. We obtained high-speed (500 fps) three-dimensional video in the field (at night using infrared lights) of Mohave rattlesnakes (Crotalus scutulatus) attempting to capture Merriam’s kangaroo rats (Dipodomys merriami). Strikes occurred from a range of distances (4.6 to 20.6 cm), and rattlesnake performance was highly variable. Missed capture attempts resulted from both rapid escape maneuvers and poor strike accuracy. Maximum velocity and acceleration of some rattlesnake strikes fell within the range of reported laboratory values, but some far exceeded most observations. Thus, quantifying rapid predator-prey interactions in the wild will propel our understanding of animal performance.

Concepts: Predation, Lotka–Volterra equation, Velocity, Cat, Rattlesnake, Crotalinae, Snake, Crotalus


Feeding strategies and predator-prey interactions of many deep-sea pelagic organisms are still unknown. This is also true for pelagic cephalopods, some of which are very abundant in oceanic ecosystems and which are known for their elaborate behaviors and central role in many foodwebs. We report on the first observations of the giant deep-sea octopus Haliphron atlanticus with prey. Using remotely operated vehicles, we saw these giant octopods holding medusae in their arms. One of the medusae could be identified as Phacellophora camtschatica (the egg-yolk jelly). Stomach content analysis confirmed predation on cnidarians and gelatinous organisms. The relationship between medusae and H. atlanticus is discussed, also in comparison with other species of the Argonautoidea, all of which have close relationships with gelatinous zooplankton.

Concepts: Predation, Ecology, Lotka–Volterra equation, Jellyfish, Ocean, Scyphozoa, Octopus, Seven-arm Octopus


Predator-prey interactions are major processes promoting phenotypic evolution. However, it remains unclear how predation causes morphological and behavioural diversity in prey species and how it might lead to speciation. Here, we show that substantial divergence in the phenotypic traits of prey species has occurred among closely related land snails as a result of adaptation to predator attacks. This caused the divergence of defensive strategies into two alternatives: passive defence and active defence. Phenotypic traits of the subarctic Karaftohelix land snail have undergone radiation in northeast Asia, and distinctive morphotypes generally coexist in the same regions. In these land snails, we documented two alternative defence behaviours against predation by malacophagous beetles. Furthermore, the behaviours are potentially associated with differences in shell morphology. In addition, molecular phylogenetic analyses indicated that these alternative strategies against predation arose independently on the islands and on the continent suggesting that anti-predator adaptation is a major cause of phenotypic diversity in these snails. Finally, we suggest the potential speciation of Karaftohelix snails as a result of the divergence of defensive strategies into passive and active behaviours and the possibility of species radiation due to anti-predatory adaptations.

Concepts: Natural selection, Evolution, Causality, Species, Predation, Ecology, Lotka–Volterra equation, Snail


During an infection, HIV experiences strong selection by immune system T cells. Recent experimental work has shown that MHC escape mutations form an important pathway for HIV to avoid such selection. In this paper, we study a model of MHC escape mutation. The model is a predator-prey model with two prey, composed of two HIV variants, and one predator, the immune system CD8 cells. We assume that one HIV variant is visible to CD8 cells and one is not. The model takes the form of a system of stochastic differential equations. Motivated by well-known results concerning the short life-cycle of HIV intrahost, we assume that HIV population dynamics occur on a faster time scale then CD8 population dynamics. This separation of time scales allows us to analyze our model using an asymptotic approach. Using this model we study the impact of an MHC escape mutation on the population dynamics and genetic evolution of the intrahost HIV population. From the perspective of population dynamics, we show that the competition between the visible and invisible HIV variants can reach steady states in which either a single variant exists or in which coexistence occurs depending on the parameter regime. We show that in some parameter regimes the end state of the system is stochastic. From a genetics perspective, we study the impact of the population dynamics on the lineages of an HIV sample taken after an escape mutation occurs. We show that the lineages go through severe bottlenecks and that in certain parameter regimes the lineage distribution can be characterized by a Kingman coalescent. Our results depend on methods from diffusion theory and coalescent theory.

Concepts: AIDS, Immune system, Mutation, Bacteria, Evolution, Lotka–Volterra equation, Major histocompatibility complex, Differential equation


Failure to account for interactions between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species interactions is undisputed, yet recovery targets generally do not account for such interactions. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species interactions and the complexity of modeling such interactions. The northern sea otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey interactions. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined sea otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these interacting species were difficult to achieve simultaneously in the absence of management. Although sea otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when sea otters were present. Removing sea otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any interacting threatened or invasive species for which there are multiple conservation objectives. Definición de Metas de Recuperación Realistas para Dos Especies en Peligro Interactuantes, Enhydra lutris y Haliotis kamtschatkana.

Concepts: Predation, Lotka–Volterra equation, Endangered species, Extinction, Mustelidae, Sea otter, Otter, Biodiversity Action Plan


Predator-prey interactions are fundamental in the evolution and structure of ecological communities. Our understanding, however, of the strategies used in pursuit and evasion remains limited. Here, we report on the hunting dynamics of the world’s fastest land animal, the cheetah, Acinonyx jubatus. Using miniaturized data loggers, we recorded fine-scale movement, speed and acceleration of free-ranging cheetahs to measure how hunting dynamics relate to chasing different sized prey. Cheetahs attained hunting speeds of up to 18.94 m s(-1) and accelerated up to 7.5 m s(-2) with greatest angular velocities achieved during the terminal phase of the hunt. The interplay between forward and lateral acceleration during chases showed that the total forces involved in speed changes and turning were approximately constant over time but varied with prey type. Thus, rather than a simple maximum speed chase, cheetahs first accelerate to decrease the distance to their prey, before reducing speed 5-8 s from the end of the hunt, so as to facilitate rapid turns to match prey escape tactics, varying the precise strategy according to prey species. Predator and prey thus pit a fine balance of speed against manoeuvring capability in a race for survival.

Concepts: Predation, Lotka–Volterra equation, Acceleration, Velocity, Kinematics, Lion, Hunting, Cheetah


A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provokes the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior.

Concepts: Physics, Sociology, Lotka–Volterra equation, Optimization, Particle swarm optimization, Ant colony optimization, Swarm intelligence, Automata theory