Discover the most talked about and latest scientific content & concepts.

Concept: Loa loa filariasis


The current antibody tests used for monitoring in lymphatic filariasis (LF) elimination programs suffer from poor specificity because of the considerable geographical overlap with other filarial infections such as Loa loa (Ll), Onchocerca volvulus (Ov), and Mansonella perstans (Mp).

Concepts: Nematodes, Parasitic diseases, Diethylcarbamazine, Filariasis, Wuchereria bancrofti, Insect-borne diseases, Loa loa filariasis, Mansonella


Background Implementation of an ivermectin-based community treatment strategy for the elimination of onchocerciasis or lymphatic filariasis has been delayed in Central Africa because of the occurrence of serious adverse events, including death, in persons with high levels of circulating Loa loa microfilariae. The LoaScope, a field-friendly diagnostic tool to quantify L. loa microfilariae in peripheral blood, enables rapid, point-of-care identification of persons at risk for serious adverse events. Methods A test-and-not-treat strategy was used in the approach to ivermectin treatment in the Okola health district in Cameroon, where the distribution of ivermectin was halted in 1999 after the occurrence of fatal events related to L. loa infection. The LoaScope was used to identify persons with an L. loa microfilarial density greater than 20,000 microfilariae per milliliter of blood, who were considered to be at risk for serious adverse events, and exclude them from ivermectin distribution. Active surveillance for posttreatment adverse events was performed daily for 6 days. Results From August through October 2015, a total of 16,259 of 22,842 persons 5 years of age or older (71.2% of the target population) were tested for L. loa microfilaremia. Among the participants who underwent testing, a total of 15,522 (95.5%) received ivermectin, 340 (2.1%) were excluded from ivermectin distribution because of an L. loa microfilarial density above the risk threshold, and 397 (2.4%) were excluded because of pregnancy or illness. No serious adverse events were observed. Nonserious adverse events were recorded in 934 participants, most of whom (67.5%) had no detectable L. loa microfilariae. Conclusions The LoaScope-based test-and-not-treat strategy enabled the reimplementation of community-wide ivermectin distribution in a heretofore “off limits” health district in Cameroon and is a potentially practical approach to larger-scale ivermectin treatment for lymphatic filariasis and onchocerciasis in areas where L. loa infection is endemic. (Funded by the Bill and Melinda Gates Foundation and others.).

Concepts: Parasitic diseases, Filariasis, Neglected diseases, Ivermectin, Loa loa filariasis, Bill & Melinda Gates Foundation, Bill Gates, Melinda Gates


Parasitic helminths cause debilitating diseases that affect millions of people in primarily low-resource settings. Efforts to eliminate onchocerciasis and lymphatic filariasis in Central Africa through mass drug administration have been suspended because of ivermectin-associated serious adverse events, including death, in patients infected with the filarial parasite Loa loa. To safely administer ivermectin for onchocerciasis or lymphatic filariasis in regions co-endemic with L. loa, a strategy termed “test and (not) treat” has been proposed whereby those with high levels of L. loa microfilariae (>30,000/ml) that put them at risk for life-threatening serious adverse events are identified and excluded from mass drug administration. To enable this, we developed a mobile phone-based video microscope that automatically quantifies L. loa microfilariae in whole blood loaded directly into a small glass capillary from a fingerprick without the need for conventional sample preparation or staining. This point-of-care device automatically captures and analyzes videos of microfilarial motion in whole blood using motorized sample scanning and onboard motion detection, minimizing input from health care workers and providing a quantification of microfilariae per milliliter of whole blood in under 2 min. To validate performance and usability of the mobile phone microscope, we tested 33 potentially Loa-infected patients in Cameroon and confirmed that automated counts correlated with manual thick smear counts (94% specificity; 100% sensitivity). Use of this technology to exclude patients from ivermectin-based treatment at the point of care in Loa-endemic regions would allow resumption/expansion of mass drug administration programs for onchocerciasis and lymphatic filariasis in Central Africa.

Concepts: Malaria, Parasitism, Parasitic diseases, Filariasis, Neglected diseases, Ivermectin, Microfilaria, Loa loa filariasis


SUMMARY Anti-Wolbachia therapy delivers safe macrofilaricidal activity with superior therapeutic outcomes compared to all standard anti-filarial treatments, with the added benefit of substantial improvements in clinical pathology. These outcomes can be achieved, in principle, with existing registered drugs, e.g. doxycycline, that are affordable, available to endemic communities and have well known, albeit population-limiting, safety profiles. The key barriers to using doxycycline as an mass drug administration (MDA) strategy for widespread community-based control are the logistics of a relatively lengthy course of treatment (4-6 weeks) and contraindications in children under eight years and pregnancy. Therefore, the primary goal of the anti-Wolbachia (A¬∑WOL) consortium is to find drugs and regimens that reduce the period of treatment from weeks to days (7 days or less), and to find drugs which would be safe in excluded target populations (pregnancy and children). A secondary goal is to refine regimens of existing antibiotics suitable for a more restricted use, prior to the availability of a regimen that is compatible with MDA usage. For example, for use in the event of the emergence of drug-resistance, in individuals with high loiasis co-infection and at risk of severe adverse events (SAE) to ivermectin, or in post-MDA ‘endgame scenarios’, where test and treat strategies become more cost effective and deliverable.

Concepts: Pharmacology, Clinical trial, Malaria, Filariasis, Doxycycline, Neglected diseases, Ivermectin, Loa loa filariasis


In 2000, the World Health Organization established the Global Programme to Eliminate Lymphatic Filariasis (GPELF), with the goal of eliminating the disease as a public health problem by 2020. Since the start of the programme, a cumulative total of 6.2 billion treatments have been delivered to affected populations - with more than 556 million people treated in 2015 alone. In this paper, we perform a rigorous systematic review of the economic evaluations of lymphatic filariasis interventions have been conducted. We demonstrate that the standard interventions to control lymphatic filariasis are consistently found to be highly cost-effective. This finding has important implications for advocacy groups and potential funders. However, there are several important inconsistencies and research gaps that need to be addressed as we move forward towards the 2020 elimination goals. One of the most important identified research gaps was a lack of evaluation of new interventions specifically targeting areas co-endemic with onchocerciasis and Loa loa - which could become a major barrier to achieving elimination.

Concepts: Medicine, Public health, Parasitic diseases, World Health Organization, Filariasis, Neglected diseases, Ivermectin, Loa loa filariasis


Endemic to Central Africa, loiasis - or African eye worm (caused by the filarial nematode Loa loa) - affects more than 10 million people. Despite causing ocular and systemic symptoms, it has typically been considered a benign condition, only of public health relevance because it impedes mass drug administration-based interventions against onchocerciasis and lymphatic filariasis in co-endemic areas. Recent research has challenged this conception, demonstrating excess mortality associated with high levels of infection, implying that loiasis warrants attention as an intrinsic public health problem. This review summarises available information on the key parasitological, entomological, and epidemiological characteristics of the infection and argues for the mobilisation of resources to control the disease, and the development of a mathematical transmission model to guide deployment of interventions.

Concepts: Epidemiology, Parasitic diseases, Filariasis, Neglected diseases, Loa loa filariasis, Loa loa, Calabar swellings, Deer fly


Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research.

Concepts: Malaria, Parasitic diseases, Filariasis, Neglected diseases, Ivermectin, Microfilaria, Loa loa filariasis, Deer fly


Lymphatic Filariasis and Onchocerciasis (river blindness) constitute pressing public health issues in tropical regions. Global elimination programs, involving mass drug administration (MDA), have been launched by the World Health Organisation. Although the drugs used are generally well tolerated, individuals who are highly co-infected with Loa loa are at risk of experiencing serious adverse events. Highly infected individuals are more likely to be found in communities with high prevalence. An understanding of the relationship between individual infection and population-level prevalence can therefore inform decisions on whether MDA can be safely administered in an endemic community. Based on Loa loa infection intensity data from individuals in Cameroon, the Republic of the Congo and the Democratic Republic of the Congo we develop a statistical model for the distribution of infection levels in communities. We then use this model to make predictive inferences regarding the proportion of individuals whose parasite count exceeds policy-relevant levels. In particular we show how to exploit the positive correlation between community-level prevalence and intensity of infection in order to predict the proportion of highly infected individuals in a community given only prevalence data from the community in question. The resulting prediction intervals are not substantially wider, and in some cases narrower, than the corresponding binomial confidence intervals obtained from data that include measurements of individual infection levels. Therefore the model developed here facilitates the estimation of the proportion of individuals highly infected with Loa loa using only estimated community level prevalence. It can be used to assess the risk of rolling out MDA in a specific community, or to guide policy decisions.

Concepts: Malaria, Republic, Prediction interval, Statistical inference, Filariasis, Neglected diseases, Ivermectin, Loa loa filariasis


Onchocerciasis and lymphatic filariasis (LF) are major filarial infections targeted for elimination in most endemic sub-Saharan Africa (SSA) countries by 2020/2025. The current control strategies are built upon community-directed mass administration of ivermectin (CDTI) for onchocerciasis, and ivermectin plus albendazole for LF, with evidence pointing towards the potential for novel drug regimens. When distributing microfilaricides however, considerable care is needed to minimise the risk of severe adverse events (SAEs) in areas that are co-endemic for onchocerciasis or LF and loiasis. This work aims to combine previously published predictive risk maps for onchocerciasis, LF and loiasis to (i) explore the scale of spatial heterogeneity in co-distributions, (ii) delineate target populations for different treatment strategies, and (iii) quantify populations at risk of SAEs across the continent.

Concepts: Malaria, Africa, Filariasis, Neglected diseases, Ivermectin, Tropical diseases, GlaxoSmithKline, Loa loa filariasis


Mass drug administration (MDA) programs have achieved remarkable success in limiting the pathology and transmission of the human parasitic infections onchocerciasis and lymphatic filariasis. The full implementation of MDA campaigns for filariasis elimination has been stymied by the unacceptable incidence of severe adverse events observed following drug treatment of a subset of individuals who harbor high loads ofLoa loamicrofilaria. Extending MDA strategies to regions where loiasis is coendemic could be done confidently if a simple, inexpensive, and rapid diagnostic method was available that could accurately identify individuals who haveL. loamicrofilarial loads above the risk threshold and could thus be excluded from treatment. A recent paper inmBioreports the discovery of an antigen unique toL. loamicrofilaria that can be detected in blood and urine and may form the basis for such an assay. Further work will reveal whether this discovery will smooth the path to achieve filariasis eradication.

Concepts: Epidemiology, Malaria, Parasitic diseases, Filariasis, Neglected diseases, Ivermectin, Tropical diseases, Loa loa filariasis