SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Liver

247

Heterochronic parabiosis rejuvenates the performance of old tissue stem cells at some expense to the young, but whether this is through shared circulation or shared organs is unclear. Here we show that heterochronic blood exchange between young and old mice without sharing other organs, affects tissues within a few days, and leads to different outcomes than heterochronic parabiosis. Investigating muscle, liver and brain hippocampus, in the presence or absence of muscle injury, we find that, in many cases, the inhibitory effects of old blood are more pronounced than the benefits of young, and that peripheral tissue injury compounds the negative effects. We also explore mechanistic explanations, including the role of B2M and TGF-beta. We conclude that, compared with heterochronic parabiosis, heterochronic blood exchange in small animals is less invasive and enables better-controlled studies with more immediate translation to therapies for humans.

Concepts: Blood, Heart, Liver, Organ, Tissues, Tissue

205

Dysfunction of cell-cell tight junction (TJ) adhesions is a major feature in the pathogenesis of various diseases. Liver TJs preserve cellular polarity by delimiting functional bile-canalicular structures, forming the blood-biliary barrier. In acetaminophen-hepatotoxicity, the mechanism by which tissue cohesion and polarity are affected remains unclear. Here, we demonstrate that acetaminophen, even at low-dose, disrupts the integrity of TJ and cell-matrix adhesions, with indicators of cellular stress with liver injury in the human hepatic HepaRG cell line, and primary hepatocytes. In mouse liver, at human-equivalence (therapeutic) doses, dose-dependent loss of intercellular hepatic TJ-associated ZO-1 protein expression was evident with progressive clinical signs of liver injury. Temporal, dose-dependent and specific disruption of the TJ-associated ZO-1 and cytoskeletal-F-actin proteins, correlated with modulation of hepatic ultrastructure. Real-time impedance biosensing verified in vitro early, dose-dependent quantitative decreases in TJ and cell-substrate adhesions. Whereas treatment with NAPQI, the reactive metabolite of acetaminophen, or the PKCα-activator and TJ-disruptor phorbol-12-myristate-13-acetate, similarly reduced TJ integrity, which may implicate oxidative stress and the PKC pathway in TJ destabilization. These findings are relevant to the clinical presentation of acetaminophen-hepatotoxicity and may inform future mechanistic studies to identify specific molecular targets and pathways that may be altered in acetaminophen-induced hepatic depolarization.

Concepts: Liver, Paracetamol, Hepatocyte, Tight junction protein 1

179

Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

Concepts: Glucose, Liver, Glycogen, Actin, Bile, Toxicology, Smooth muscle, Hepatocyte

176

Residence within a customized vacuole is a highly successful strategy used by diverse intracellular microorganisms. The parasitophorous vacuole membrane (PVM) is the critical interface between Plasmodium parasites and their possibly hostile, yet ultimately sustaining, host cell environment. We show that torins, developed as ATP-competitive mammalian target of rapamycin (mTOR) kinase inhibitors, are fast-acting antiplasmodial compounds that unexpectedly target the parasite directly, blocking the dynamic trafficking of the Plasmodium proteins exported protein 1 (EXP1) and upregulated in sporozoites 4 (UIS4) to the liver stage PVM and leading to efficient parasite elimination by the hepatocyte. Torin2 has single-digit, or lower, nanomolar potency in both liver and blood stages of infection in vitro and is likewise effective against both stages in vivo, with a single oral dose sufficient to clear liver stage infection. Parasite elimination and perturbed trafficking of liver stage PVM-resident proteins are both specific aspects of torin-mediated Plasmodium liver stage inhibition, indicating that torins have a distinct mode of action compared with currently used antimalarials.

Concepts: Protein, Cell, Bacteria, Cell membrane, Liver, In vivo, In vitro, Membrane protein

171

Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues.

Concepts: Liver, Anatomical pathology, Histology, Osteoarthritis, Immunohistochemistry, Staining, Ligament, Microtome

171

We report the case of an adult patient recently diagnosed with cirrhosis. The ultrasound evaluation described a multinodular inhomogeneous liver, requiring a magnetic resonance imaging scan for further characterization. The performed magnetic resonance imaging examination confirmed the diagnosis of cirrhosis associated with portal hypertension and detected a vascular left transdiaphragmatic hernia. Although various types of diaphragmatic hernias have been described - congenital or acquired - to the best of our knowledge, this type of pathology has never been reported.

Concepts: Medical terms, Medical imaging, Liver, Nuclear magnetic resonance, Magnetic resonance imaging, Ultrasound, Congenital diaphragmatic hernia, Diaphragmatic hernia

170

Carfilzomib, an irreversible proteasome inhibitor, has a favorable safety profile and significant antitumor activity in patients with relapsed and refractory multiple myeloma (MM). Here we summarize the clinical pharmacokinetics (PK), metabolism, and drug-drug interaction (DDI) profile of carfilzomib. The PK of carfilzomib, infused over 2-10 minutes, was evaluated in patients with solid tumors or MM. Metabolites of carfilzomib were characterized in patient plasma and urine samples. In vitro drug metabolism and DDI studies were conducted in human liver microsomes and hepatocytes. A clinical DDI study was conducted in patients with solid tumors to evaluate the effect of carfilzomib on CYP3A activity. Plasma concentrations of carfilzomib declined rapidly and in a biphasic manner after intravenous administration. The systemic half-life was short and the systemic clearance rate was higher than hepatic blood flow. Carfilzomib was cleared largely extrahepatically via peptidase cleavage and epoxide hydrolysis. Cytochrome P450-mediated metabolism played a minor role, suggesting that coadministration of P450 inhibitors or inducers is unlikely to change its PK profile. Carfilzomib showed direct and time-dependent inhibition of CYP3A in human liver microsome preparations and exposure to carfilzomib resulted in reductions in CYP3A and 1A2 gene expression in cultured human hepatocytes. However, administration of carfilzomib did not affect the PK of midazolam in patients with solid tumors, and there were no safety signals indicative of potential drug interactions. We conclude that the rapid systemic clearance and short half-life of carfilzomib limit clinically significant DDI.

Concepts: Pharmacology, Cancer, Liver, Glycogen, Cytochrome P450, Proteasome, Drug metabolism, Hepatocyte

170

Among primates, human neonates have the largest brains but also the highest proportion of body fat. If placental nutrient supply is limited, the fetus faces a dilemma: should resources be allocated to brain growth, or to fat deposition for use as a potential postnatal energy reserve? We hypothesised that resolving this dilemma operates at the level of umbilical blood distribution entering the fetal liver. In 381 uncomplicated pregnancies in third trimester, we measured blood flow perfusing the fetal liver, or bypassing it via the ductus venosus to supply the brain and heart using ultrasound techniques. Across the range of fetal growth and independent of the mother’s adiposity and parity, greater liver blood flow was associated with greater offspring fat mass measured by dual-energy X-ray absorptiometry, both in the infant at birth (r = 0.43, P<0.001) and at age 4 years (r = 0.16, P = 0.02). In contrast, smaller placentas less able to meet fetal demand for essential nutrients were associated with a brain-sparing flow pattern (r = 0.17, p = 0.02). This flow pattern was also associated with a higher degree of shunting through ductus venosus (P = 0.04). We propose that humans evolved a developmental strategy to prioritize nutrient allocation for prenatal fat deposition when the supply of conditionally essential nutrients requiring hepatic inter-conversion is limited, switching resource allocation to favour the brain if the supply of essential nutrients is limited. Facilitated placental transfer mechanisms for glucose and other nutrients evolved in environments less affluent than those now prevalent in developed populations, and we propose that in circumstances of maternal adiposity and nutrient excess these mechanisms now also lead to prenatal fat deposition. Prenatal developmental influences play important roles in the human propensity to deposit fat.

Concepts: Pregnancy, Childbirth, Infant, Embryo, Fetus, Liver, Embryology, Glycerol

170

The purpose of this study was to determine the effect of liver glycogen loading on net hepatic glycogen synthesis during hyperinsulinemia or hepatic portal vein glucose infusion in vivo. Liver glycogen levels were supercompensated (SCGly) in two groups (using intraportal fructose infusion) but not in two others (Gly) during hyperglycemic-normoinsulinemia. Following a 2-h control period during which fructose infusion was stopped, there was a 2-h experimental period in which the response to hyperglycemia plus either 4× basal insulin (INS) or portal vein glucose infusion (PoG) was measured. Increased hepatic glycogen reduced the percent of glucose taken up by the liver that was deposited in glycogen (74 ± 3 vs. 53 ± 5% in Gly+INS and SCGly+INS, respectively, and 72 ± 3 vs. 50 ± 6% in Gly+PoG and SCGly+PoG, respectively). The reduction in liver glycogen synthesis in SCGly+INS was accompanied by a decrease in both insulin signaling and an increase in AMPK activation, whereas only the latter was observed in SCGly+PoG. These data indicate that liver glycogen loading impairs glycogen synthesis regardless of the signal used to stimulate it.

Concepts: Insulin, Glucose, Cirrhosis, Liver, Glycogen, Hepatic portal vein, Portal venous system, Hepatic portal system

170

BACKGROUND: Cichorium glandulosum Boiss. et Huet is used for treatment of liver disorders, and its effects are attributed to sesquiterpenes. This study aims to investigate the hepatoprotective effects of a sesquiterpene-rich fraction (SRF) from the aerial part of C. glandulosum on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in mice, and on priming with Bacillus Calmette–Guerin (BCG) followed by lipopolysaccharide (LPS)-induced immunological liver injury in mice. METHODS: SRF was suspended in water and administered to mice at 0.05, 0.10 and 0.20 g/kg body weight for 7 consecutive days. An active control drug (bifendate pills) was suspended in distilled water and administered to mice at 0.40 g/kg body weight for 7 consecutive days. Hepatotoxicity was induced by intraperitoneal injection of 0.1% CCl4 (0.2 mL/mouse) at 13 h before the last drug administration, or by tail intravenous injection of BCG (0.2 mL/mouse) before the first drug administration and LPS (0.2 mL/mouse; 8 mug) at 15 h before the last drug administration. Blood samples and the livers were collected for evaluation of the biochemical parameters of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (TBIL). RESULTS: SRF significantly reduced the impact of CCl4 toxicity. The highest dose of SRF (0.20 g/kg) was the most effective, reflected by significant reductions in the levels of AST (P = 0.001), ALT (P = 0.000) and TBIL (P = 0.009). The serum enzymatic levels induced by BCG and subsequent LPS injection were significantly and dose-dependently restored by SRF, reflected by significant reductions in the levels of AST (P = 0.003), ALT (P = 0.003) and TBIL (P = 0.007) for the highest dose of SRF (0.20 g/kg). CONCLUSION: SRF is hepatoprotective in animal models of chemical and immunological acute liver injury.

Concepts: Liver, Liver function tests, Aspartate transaminase, Alanine transaminase, Hepatology, Bilirubin, Hepatotoxicity, Chemical pathology