Discover the most talked about and latest scientific content & concepts.

Concept: Little brown bat


Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive big brown bats under four behavioral contexts: low aggression, medium aggression, high aggression, and appeasement. Even limited to these contexts, big brown bats possess a rich repertoire of social vocalizations, with 18 distinct syllable types automatically classified using a spectrogram cross-correlation procedure. For each behavioral context, we describe vocalizations in terms of syllable acoustics, temporal emission patterns, and typical syllable sequences. Emotion-related acoustic cues are evident within the call structure by context-specific syllable types or variations in the temporal emission pattern. We designed a paradigm that could evoke aggressive vocalizations while monitoring heart rate as an objective measure of internal physiological state. Changes in the magnitude and duration of elevated heart rate scaled to the level of evoked aggression, confirming the behavioral state classifications assessed by vocalizations and behavioral displays. These results reveal a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a caller.

Concepts: Psychology, Sociology, Mammal, Acoustics, Bat, Big brown bat, Little brown bat, Eptesicus


White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.

Concepts: Infectious disease, Skin, Bat, Little brown bat, Torpor, Hibernation, White nose syndrome, Estivation


BackgroundThe physiological effects of white-nose syndrome (WNS) in hibernating bats and ultimate causes of mortality from infection with Pseudogymnoascus (formerly Geomyces) destructans are not fully understood. Increased frequency of arousal from torpor described among hibernating bats with late-stage WNS is thought to accelerate depletion of fat reserves, but the physiological mechanisms that lead to these alterations in hibernation behavior have not been elucidated. We used the doubly labeled water (DLW) method and clinical chemistry to evaluate energy use, body composition changes, and blood chemistry perturbations in hibernating little brown bats (Myotis lucifugus) experimentally infected with P. destructans to better understand the physiological processes that underlie mortality from WNS.ResultsThese data indicated that fat energy utilization, as demonstrated by changes in body composition, was two-fold higher for bats with WNS compared to negative controls. These differences were apparent in early stages of infection when torpor-arousal patterns were equivalent between infected and non-infected animals, suggesting that P. destructans has complex physiological impacts on its host prior to onset of clinical signs indicative of late-stage infections. Additionally, bats with mild to moderate skin lesions associated with early-stage WNS demonstrated a chronic respiratory acidosis characterized by significantly elevated dissolved carbon dioxide, acidemia, and elevated bicarbonate. Potassium concentrations were also significantly higher among infected bats, but sodium, chloride, and other hydration parameters were equivalent to controls.ConclusionsIntegrating these novel findings on the physiological changes that occur in early-stage WNS with those previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease mitigation strategies aimed at reducing morbidity and mortality that results from WNS.

Concepts: Carbon dioxide, Physiology, Bat, Bicarbonate, Acidosis, Little brown bat, Hibernation, White nose syndrome


Infection of North American bats with the keratin-digesting fungus Geomyces destructans often result in holes and ruptures of wing membranes, yet it is unknown if flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena in Myotis albescens and M. nigricans where I observed individuals with intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds but performed less flight manoeuvres than conspecifics with intact wings. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rates may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared to conspecifics with intact wings. Possibly, bats compensated an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, bats may not suffer directly from moderate wing damages by experiencing increased metabolic rates but indirectly by a reduced manoeuvrability and foraging success. This could impede a bat’s ability to gain sufficient body mass before hibernation.

Concepts: Evolution, Metabolism, Bat, Little brown bat, Flight, Wing, Flying and gliding animals, Trailing edge


White-nose Syndrome (WNS) is an emerging infectious mycosis that has impacted multiple species of North American bats since its initial discovery in 2006, yet the physiology of the causal agent, the psychrophilic fungus Pseudogymnoascus destructans ( = Geomyces destructans), is not well understood. We investigated the ability of P. destructans to secrete enzymes that could permit environmental growth or affect pathogenesis and compared enzyme activity across several Pseudogymnoascus species isolated from both hibernating bats and cave sediments. We found that P. destructans produced enzymes that could be beneficial in either a pathogenic or saprotrophic context, such as lipases, hemolysins, and urease, as well as chitinase and cellulases, which could aid in saprotrophic growth. The WNS pathogen showed significantly lower activity for urease and endoglucanase compared to con-generic species (Pseudogymnoascus), which may indicate a shift in selective pressure to the detriment of P. destructans' saprotrophic ability. Based on the positive function of multiple saprotrophic enzymes, the causal agent of White-nose Syndrome shows potential for environmental growth on a variety of substrates found in caves, albeit at a reduced level compared to environmental strains. Our data suggest that if P. destructans emerged as an opportunistic infection from an environmental source, co-evolution with its host may have led to a reduced capacity for saprotrophic growth.

Concepts: Immune system, Bacteria, Enzyme, Opportunistic infection, Pathogen, Hydrolysis, Little brown bat, White nose syndrome


White-nose syndrome (WNS) in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd). We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus) with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL) IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2), that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality, either by affecting torpor behavior or causing damage upon emergence in the spring.

Concepts: Immune system, Inflammation, Gene expression, Bacteria, Candida albicans, Bat, Little brown bat, White nose syndrome


White-nose syndrome (WNS) is an emerging fungal disease of bats caused by Pseudogymnoascus destructans. Since it was first detected near Albany, NY, in 2006, the fungus has spread across eastern North America, killing unprecedented numbers of hibernating bats. The devastating impacts of WNS on Nearctic bat species are attributed to the likely introduction of P. destructans from Eurasia to naive host populations in eastern North America. Since 2006, the disease has spread in a gradual wavelike pattern consistent with introduction of the pathogen at a single location. Here, we describe the first detection of P. destructans in western North America in a little brown bat (Myotis lucifugus) from near Seattle, WA, far from the previously recognized geographic distribution of the fungus. Whole-genome sequencing and phylogenetic analyses indicated that the isolate of P. destructans from Washington grouped with other isolates of a presumed clonal lineage from the eastern United States. Thus, the occurrence of P. destructans in Washington does not likely represent a novel introduction of the fungus from Eurasia, and the lack of intensive surveillance in the western United States makes it difficult to interpret whether the occurrence of P. destructans in the Pacific Northwest is disjunct from that in eastern North America. Although there is uncertainty surrounding the impacts of WNS in the Pacific Northwest, the presence of the pathogen in western North America could have major consequences for bat conservation. IMPORTANCE White-nose syndrome (WNS) represents one of the most consequential wildlife diseases of modern times. Since it was first documented in New York in 2006, the disease has killed millions of bats and threatens several formerly abundant species with extirpation or extinction. The spread of WNS in eastern North America has been relatively gradual, inducing optimism that disease mitigation strategies could be established in time to conserve bats susceptible to WNS in western North America. The recent detection of the fungus that causes WNS in the Pacific Northwest, far from its previous known distribution, increases the urgency for understanding the long-term impacts of this disease and for developing strategies to conserve imperiled bat species.

Concepts: United States, Bat, North America, Little brown bat, Oregon, Washington, Bats, White nose syndrome


Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi’s pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

Concepts: Little brown bat, Wind power, Bats, Wind turbine, Common Pipistrelle, Pipistrellus, Soprano Pipistrelle, Mouse-eared bat


Animals can call on a multitude of sensory information to orient and navigate. One such cue is the pattern of polarized light in the sky, which for example can be used by birds as a geographical reference to calibrate other cues in the compass mechanism. Here we demonstrate that the female greater mouse-eared bat (Myotis myotis) uses polarization cues at sunset to calibrate a magnetic compass, which is subsequently used for orientation during a homing experiment. This renders bats the only mammal known so far to make use of the polarization pattern in the sky. Although there is currently no clear understanding of how this cue is perceived in this taxon, our observation has general implications for the sensory biology of mammalian vision.

Concepts: Electromagnetic radiation, Mammal, Primate, Polarization, Bat, Little brown bat, Paleontology, Sky


Infectious diseases of wildlife are increasing worldwide with implications for conservation and human public health. The microbiota (i.e. microbial community living on or in a host) could influence wildlife disease resistance or tolerance. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans (Pd), has killed millions of hibernating North American bats since 2007. We characterized the skin microbiota of naïve, pre-WNS little brown bats (Myotis lucifugus) from three WNS-negative hibernation sites and persisting, previously exposed bats from three WNS-positive sites to test the hypothesis that the skin microbiota of bats shifts following WNS invasion.

Concepts: Epidemiology, Disease, Infectious disease, Bacteria, Infection, Bat, Little brown bat, White nose syndrome