SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Lithium-ion battery

235

Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

Concepts: Electrochemistry, Chemical element, Battery, Electrolyte, Electrolysis, Lithium-ion battery, Lithium, Agaricus bisporus

193

Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered.

Concepts: Functional group, Battery, Rechargeable battery, Carbohydrate, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery

175

One of the most exciting areas in lithium ion batteries is engineering structured silicon anodes. These new materials promise to lead the next generation of batteries with significantly higher reversible charge capacity than current technologies. One drawback of these materials is that their production involves costly processing steps, limiting their application in commercial lithium ion batteries. In this report we present an inexpensive method for synthesizing macroporous silicon particulates (MPSPs). After being mixed with polyacrylonitrile (PAN) and pyrolyzed, MPSPs can alloy with lithium, resulting in capacities of 1000 mAhg(-1) for over 600+ cycles. These sponge-like MPSPs with pyrolyzed PAN (PPAN) can accommodate the large volume expansion associated with silicon lithiation. This performance combined with low cost processing yields a competitive anode material that will have an immediate and direct application in lithium ion batteries.

Concepts: Electron, Cathode, Battery, Electrolysis, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery

170

New energy industry including electric vehicles and large-scale energy storage in smart grids requires energy storage systems of good safety, high reliability, high energy density and low cost. Here a coated Li metal is used as anode for an aqueous rechargeable lithium battery (ARLB) combining LiMnO as cathode and 0.5 mol l LiSO aqueous solution as electrolyte. Due to the “cross-over” effect of Li ions in the coating, this ARLB delivers an output voltage of about 4.0 V, a big breakthrough of the theoretic stable window of water, 1.229 V. Its cycling is very excellent with Coulomb efficiency of 100% except in the first cycle. Its energy density can be 446 Wh kg, about 80% higher than that for traditional lithium ion battery. Its power efficiency can be above 95%. Furthermore, its cost is low and safety is much reliable. It provides another chemistry for post lithium ion batteries.

Concepts: Cathode, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Nanowire battery, Energy storage

169

We demonstrate a simple, efficient, yet versatile strategy for the synthesis of novel hierarchical heterostructures composed of TiO(2) nanofiber stem and various metal oxides (MOs) secondary nanostructures, including Co(3)O(4), Fe(2)O(3), Fe(3)O(4), and CuO, by advantageously combining the versatility of the electrospinning technique and hydrothermal growth method, for which the controllable formation process and possible formation mechanism are also investigated. Moreover, as a proof-of-concept demonstration of the functional properties of these hierarchical heterostructures, the Co(3)O(4)/TiO(2) hierarchical heterostructures are investigated as the lithium-ion batteries (LIBs) anode materials for the first time, which not only delivers a high reversible capacity of 632.5 mAh g(-1) and 95.3% capacity retention over 480 cycles, but also shows excellent rate capability with respect to the pristine TiO(2) nanofibers. The synergetic effect between Co(3)O(4) and TiO(2) as well as the unique feature of hierarchical heterostructures are probably responsible for the enhanced electrochemical performance.

Concepts: Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Lithium-ion polymer battery, Electric car, Lithium-ion batteries

168

Destructive gas generation with associated swelling has been a major challenge to the large-scale application of lithium ion batteries (LIBs) made from Li(4)Ti(5)O(12) (LTO) anodes. Here we report root causes of the gassing behavior, and suggest remedy to suppress it. The generated gases mainly contain H(2), CO(2) and CO, which originate from interfacial reactions between LTO and surrounding alkyl carbonate solvents. The reactions occur at the very thin outermost surface of LTO (111) plane, which result in transformation from (111) to (222) plane and formation of (101) plane of anatase TiO(2). A nanoscale carbon coating along with a stable solid electrolyte interface (SEI) film around LTO is seen most effective as a barrier layer in suppressing the interfacial reaction and resulting gassing from the LTO surface. Such an ability to tune the interface nanostructure of electrodes has practical implications in the design of next-generation high power LIBs.

Concepts: Cathode, Electrochemistry, Solid, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery

157

Although the energy densities of batteries continue to increase, safety problems (for example, fires and explosions) associated with the use of highly flammable liquid organic electrolytes remain a big issue, significantly hindering further practical applications of the next generation of high-energy batteries. We have fabricated a novel “smart” nonwoven electrospun separator with thermal-triggered flame-retardant properties for lithium-ion batteries. The encapsulation of a flame retardant inside a protective polymer shell has prevented direct dissolution of the retardant agent into the electrolyte, which would otherwise have negative effects on battery performance. During thermal runaway of the lithium-ion battery, the protective polymer shell would melt, triggered by the increased temperature, and the flame retardant would be released, thus effectively suppressing the combustion of the highly flammable electrolytes.

Concepts: Water, Temperature, Physical chemistry, Rechargeable battery, Lithium-ion battery, Lithium, Lithium battery, Fire

93

The conversion of allergic pollen grains into carbon microstructures was carried out through a facile, one-step, solid-state pyrolysis process in an inert atmosphere. The as-prepared carbonaceous particles were further air activated at 300 °C and then evaluated as lithium ion battery anodes at room (25 °C) and elevated (50 °C) temperatures. The distinct morphologies of bee pollens and cattail pollens are resembled on the final architecture of produced carbons. Scanning Electron Microscopy images shows that activated bee pollen carbon (ABP) is comprised of spiky, brain-like, and tiny spheres; while activated cattail pollen carbon (ACP) resembles deflated spheres. Structural analysis through X-ray diffraction and Raman spectroscopy confirmed their amorphous nature. X-ray photoelectron spectroscopy analysis of ABP and ACP confirmed that both samples contain high levels of oxygen and small amount of nitrogen contents. At C/10 rate, ACP electrode delivered high specific lithium storage reversible capacities (590 mAh/g at 50 °C and 382 mAh/g at 25 °C) and also exhibited excellent high rate capabilities. Through electrochemical impedance spectroscopy studies, improved performance of ACP is attributed to its lower charge transfer resistance than ABP. Current studies demonstrate that morphologically distinct renewable pollens could produce carbon architectures for anode applications in energy storage devices.

Concepts: Electron, Spectroscopy, Cathode, Electrochemistry, Battery, Rechargeable battery, Lithium-ion battery, Lithium

86

Nanoparticulate electrodes, such as Li x FePO4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materials remains unresolved because real-time observation at such a fine scale is still lacking. We report visualization of local Li intercalation via solid-solution transformation in individual Li x FePO4 nanoparticles, enabled by probing sub-angstrom changes in the lattice spacing in situ. The real-time observation reveals inhomogeneous intercalation, accompanied with an unexpected reversal of Li concentration at the nanometer scale. The origin of the reversal phenomenon is elucidated through phase-field simulations, and it is attributed to the presence of structurally different regions that have distinct chemical potential functions. The findings from this study provide a new perspective on the local intercalation dynamics in battery electrodes.

Concepts: Nanoparticle, Nanotechnology, Silicon, Battery, Lithium-ion battery, Lithium, Lithium battery

74

Improving one property without sacrificing others is challenging for lithium-ion batteries due to the trade-off nature among key parameters. Here we report a chemical vapor deposition process to grow a graphene-silica assembly, called a graphene ball. Its hierarchical three-dimensional structure with the silicon oxide nanoparticle center allows even 1 wt% graphene ball to be uniformly coated onto a nickel-rich layered cathode via scalable Nobilta milling. The graphene-ball coating improves cycle life and fast charging capability by suppressing detrimental side reactions and providing efficient conductive pathways. The graphene ball itself also serves as an anode material with a high specific capacity of 716.2 mAh g(-1). A full-cell incorporating graphene balls increases the volumetric energy density by 27.6% compared to a control cell without graphene balls, showing the possibility of achieving 800 Wh L(-1) in a commercial cell setting, along with a high cyclability of 78.6% capacity retention after 500 cycles at 5C and 60 °C.

Concepts: Density, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Nanowire battery, Energy density, Nickel-cadmium battery