Discover the most talked about and latest scientific content & concepts.

Concept: Liquid crystal display


Multiview three-dimensional (3D) displays can project the correct perspectives of a 3D image in many spatial directions simultaneously. They provide a 3D stereoscopic experience to many viewers at the same time with full motion parallax and do not require special glasses or eye tracking. None of the leading multiview 3D solutions is particularly well suited to mobile devices (watches, mobile phones or tablets), which require the combination of a thin, portable form factor, a high spatial resolution and a wide full-parallax view zone (for short viewing distance from potentially steep angles). Here we introduce a multi-directional diffractive backlight technology that permits the rendering of high-resolution, full-parallax 3D images in a very wide view zone (up to 180 degrees in principle) at an observation distance of up to a metre. The key to our design is a guided-wave illumination technique based on light-emitting diodes that produces wide-angle multiview images in colour from a thin planar transparent lightguide. Pixels associated with different views or colours are spatially multiplexed and can be independently addressed and modulated at video rate using an external shutter plane. To illustrate the capabilities of this technology, we use simple ink masks or a high-resolution commercial liquid-crystal display unit to demonstrate passive and active (30 frames per second) modulation of a 64-view backlight, producing 3D images with a spatial resolution of 88 pixels per inch and full-motion parallax in an unprecedented view zone of 90 degrees. We also present several transparent hand-held prototypes showing animated sequences of up to six different 200-view images at a resolution of 127 pixels per inch.

Concepts: Optics, Computer graphics, Depth perception, Light-emitting diode, Display resolution, Liquid crystal display, Angle, Pixel


The mass digitization of books is changing the way information is created, disseminated and displayed. Electronic book readers (e-readers) generally refer to two main display technologies: the electronic ink (E-ink) and the liquid crystal display (LCD). Both technologies have advantages and disadvantages, but the question whether one or the other triggers less visual fatigue is still open. The aim of the present research was to study the effects of the display technology on visual fatigue. To this end, participants performed a longitudinal study in which two last generation e-readers (LCD, E-ink) and paper book were tested in three different prolonged reading sessions separated by - on average - ten days. Results from both objective (Blinks per second) and subjective (Visual Fatigue Scale) measures suggested that reading on the LCD (Kindle Fire HD) triggers higher visual fatigue with respect to both the E-ink (Kindle Paperwhite) and the paper book. The absence of differences between E-ink and paper suggests that, concerning visual fatigue, the E-ink is indeed very similar to the paper.

Concepts: Liquid crystal display, Liquid crystal, E-book, Display device, Display technology, Book, Electronic paper, Amazon Kindle


Tachistoscopes allow brief visual stimulation delivery, which is crucial for experiments in which subliminal presentation is required. Up to now, tachistoscopes have had shortcomings with respect to timing accuracy, reliability, and flexibility of use. Here, we present a new and inexpensive two-channel tachistoscope that allows for exposure durations in the submillisecond range with an extremely high timing accuracy. The tachistoscope consists of two standard liquid-crystal display (LCD) monitors of the light-emitting diode (LED) backlight type, a semipermeable mirror, a mounting rack, and an experimental personal computer (PC). The monitors have been modified to provide external access to the LED backlights, which are controlled by the PC via the standard parallel port. Photodiode measurements confirmed reliable operation of the tachistoscope and revealed switching times of 3 μs. Our method may also be of great advantage in single-monitor setups, in which it allows for manipulating the stimulus timing with submillisecond precision in many experimental situations. Where this is not applicable, the monitor can be operated in standard mode by disabling the external backlight control instantaneously.

Concepts: Light-emitting diode, Liquid crystal display, Diode, Personal computer, Cathode ray tube, Backlight, Gamut, Parallel port


Light emitting diode (LED)-backlit liquid crystal displays (LCDs) hold the promise of improving image quality while reducing the energy consumption with signal-dependent local dimming. However, most existing local dimming algorithms are mostly motivated by simple implementation, and they often lack concern for visual quality. To fully realize the potential of LED-backlit LCDs and reduce the artifacts that often occur in current systems, we propose a novel local dimming technique that can achieve the theoretical highest fidelity of intensity reproduction in either l(1) or l(2) metrics. Both the exact and fast approximate versions of the optimal local dimming algorithm are proposed. Simulation results demonstrate superior performances of the proposed algorithm in terms of visual quality and power consumption.

Concepts: Energy, Light-emitting diode, Lighting, Liquid crystal display, Liquid crystal, Cathode ray tube, Backlight, Gamut


The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the areas (number of pixels) corresponding to seven different classes (Grapes, Wood, Background, and four classes of Leaf, of increasing leaf age). Each one is initialized by the user, who selects a set of representative pixels for every class in order to induce the clustering around them. The proposed methodology was evaluated with 70 grapevine (V. vinifera L. cv. Tempranillo) images, acquired in a commercial vineyard located in La Rioja (Spain), after several defoliation and de-fruiting events on 10 vines, with a conventional RGB camera and no artificial illumination. The segmentation results showed a performance of 92% for leaves and 98% for clusters, and allowed to assess the grapevine’s leaf area and yield with R2 values of 0.81 (p < 0.001) and 0.73 (p = 0.002), respectively. This methodology, which operates with a simple image acquisition setup and guarantees the right number and kind of pixel classes, has shown to be suitable and robust enough to provide valuable information for vineyard management.

Concepts: Liquid crystal display, Photography, Viticulture, Digital camera, Canopy, Pixel, Spanish wine, Wine terms


The cholesteric-liquid-crystalline structure, which concerns the organization of chromatin, collagen, chitin, or cellulose, is omnipresent in living matter. In technology, it is found in temperature and pressure sensors, supertwisted nematic liquid crystal displays, optical filters, reflective devices, or cosmetics. A cholesteric liquid crystal reflects light because of its helical structure. The reflection is selective - the bandwidth is limited to a few tens of nanometers and the reflectance is equal to at most 50% for unpolarized incident light, which is a consequence of the polarization-selectivity rule. These limits must be exceeded for innovative applications like polarizer-free reflective displays, broadband polarizers, optical data storage media, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. Novel cholesteric-liquid-crystalline architectures with the related fabrication procedures must therefore be developed. This article reviews solutions found in living matter and laboratories to broaden the bandwidth around a central reflection wavelength, do without the polarization-selectivity rule and go beyond the reflectance limit.

Concepts: Crystal, Light, Refraction, Liquid crystal display, Reflection, Birefringence, Liquid crystal, Cholesteric liquid crystal


We report the fabrication of a highly flexible indium tin oxide (ITO) electrode that is completely transparent to light in the visible spectrum. The electrode was fabricated via the formation of a novel ITO nanoarray structure, consisting of discrete globular ITO nanoparticles superimposed on an agglomerated ITO layer, on a heat-sensitive polymer substrate. The ITO nanoarray spontaneously assembled on the surface of the polymer substrate by a simple sputter coating at room temperature, without nanolithographic or solution-based assembly processes being required. The ITO nanoarray exhibited a resistivity of approximately 2.3 × 10(-3) Ω cm and a specular transmission of about 99% at 550 nm, surpassing all previously reported values of these parameters in the case of transparent porous ITO electrodes synthesized via solution-based processes at elevated temperatures. This novel nanoarray structure and its fabrication methodology can be used for coating large-area transparent electrodes on heat-sensitive polymer substrates, a goal unrealizable through currently available solution-based fabrication methods.

Concepts: Light, Solar cell, Indium tin oxide, Liquid crystal display, Indium(III) oxide, Indium, Transparent electrodes, Sputter deposition


The photocontrolled phase transitions and reflection behaviors of a smectic liquid crystal, 4-octyl-4'-cyanobiphenyl (8CB), tuned by a chiral azobenzene, are systematically investigated. For the smectic 8CB doped with the chiral azobenzene (1R)-(-)-4-n-hexyl-4'-menthylazobenzene (ABE), the initial smectic phase can be switched to cholesteric and then to isotropic upon UV irradiation due to the trans-to-cis photoisomerization of ABE; however, no reflection band is observed. For the smectic 8CB doped with ABE and the chiral agent (S)-(-)-1,1'-binaphthyl-2,2'-diol (BN), a reflection band located in the short-wavelength infrared region is observed, which disappears after further UV irradiation. For the smectic 8CB doped with ABE and a chiral agent with higher helical twisting power, (S)-2,2'-methylendioxy-1,1'-binaphthalene (DBN), a phototunable system with cholesteric pitch short enough to reflect visible light is demonstrated. With a given concentration of the chiral dopant DBN, a reversible reflection color transition is realized tuned by the isomerization of azobenzene. The reverse phase transition from isotropic to cholesteric and then to smectic can be recovered upon visible irradiation. The photocontrolled phase transitions in smectic liquid crystals and the corresponding changes in reflection band switched by photoisomerization of azobenzene may provide impetus for their practical application in optical memories, displays, and switches.

Concepts: Crystal, Crystal structure, Phase transition, Liquid crystal display, Liquid crystal, Cholesteric liquid crystal


In this study, a method which is environmentally sound, time and energy efficient has been used for recovery of indium from used liquid crystal display (LCD) panels. In this method, indium tin oxide (ITO) glass was crushed to micron size particles in seconds via high energy ball milling (HEBM). The parameters affecting the amount of dissolved indium such as milling time, particle size, effect time of acid solution, amount of HCl in the acid solution were tried to be optimized. The results show that by crushing ITO glass to micron size particles by HEBM, it is possible to extract higher amount of indium at room temperature than that by conventional methods using only conventional shredding machines. In this study, 86% of indium which exists in raw materials was recovered about in a very short time.

Concepts: Liquid, Indium tin oxide, Display resolution, Liquid crystal display, Indium(III) oxide, Indium, Liquid crystal, Display technology


We demonstrate self-aligned and high-performance liquid crystal (LC) systems doped with 1-dimensional (1D) chain-like clusters of CuInS(2) (CIS)-ZnS core-shell quantum dots (QDs). By changing the cell fabrication method of the LC-QD composites, we can selectively control the orientation of the LC molecules between the homogeneous and homeotropic states without conventional LC alignment layers. The homeotropic alignment of LCs was achieved by random dropcasting and the homogeneous alignment was performed using a capillary injection of LC-QDs due to the random or linear diffusion of QD clusters into ITO defects. The electrically compensated bend (ECB)- and vertically aligned (VA) mode LC displays (LCDs) containing our LC-QD composite both showed superior electro-optic (EO) properties. A 37.1% reduction in the threshold voltage (V(th)) and a 36.6% decrease in the response time were observed for ECB mode LCDs, and a 47.0% reduction in the V(th) and a 38.3% decrease in the response time were observed for VA mode LCDs, meaning that the proposed LC-QD composites have a great potential for the production of advanced flexible LCDs.

Concepts: Crystal, Matter, Atom, Liquid crystal display, Liquid crystal, Homogeneous alignment, Homeotropic alignment, Blue Phase Mode LCD