Discover the most talked about and latest scientific content & concepts.

Concept: Limbic system


People often discount evidence that contradicts their firmly held beliefs. However, little is known about the neural mechanisms that govern this behavior. We used neuroimaging to investigate the neural systems involved in maintaining belief in the face of counterevidence, presenting 40 liberals with arguments that contradicted their strongly held political and non-political views. Challenges to political beliefs produced increased activity in the default mode network-a set of interconnected structures associated with self-representation and disengagement from the external world. Trials with greater belief resistance showed increased response in the dorsomedial prefrontal cortex and decreased activity in the orbitofrontal cortex. We also found that participants who changed their minds more showed less BOLD signal in the insula and the amygdala when evaluating counterevidence. These results highlight the role of emotion in belief-change resistance and offer insight into the neural systems involved in belief maintenance, motivated reasoning, and related phenomena.

Concepts: Psychology, Brain, Truth, Neuroscience, Cerebrum, Philosophy of mind, Limbic system, Frontal lobe


Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior.

Concepts: Psychology, Human, Male, Reproduction, Limbic system, Motivation, Puberty, Emotion


The neural correlates of creativity are poorly understood. Freestyle rap provides a unique opportunity to study spontaneous lyrical improvisation, a multidimensional form of creativity at the interface of music and language. Here we use functional magnetic resonance imaging to characterize this process. Task contrast analyses indicate that improvised performance is characterized by dissociated activity in medial and dorsolateral prefrontal cortices, providing a context in which stimulus-independent behaviors may unfold in the absence of conscious monitoring and volitional control. Connectivity analyses reveal widespread improvisation-related correlations between medial prefrontal, cingulate motor, perisylvian cortices and amygdala, suggesting the emergence of a network linking motivation, language, affect and movement. Lyrical improvisation appears to be characterized by altered relationships between regions coupling intention and action, in which conventional executive control may be bypassed and motor control directed by cingulate motor mechanisms. These functional reorganizations may facilitate the initial improvisatory phase of creative behavior.

Concepts: Psychology, Brain, Neuroscience, Magnetic resonance imaging, Cognition, Limbic system, Freestyle rap, Rapping


Modern medicine has generally viewed the concept of “psychosomatic” disease with suspicion. This view arose partly because no neural networks were known for the mind, conceptually associated with the cerebral cortex, to influence autonomic and endocrine systems that control internal organs. Here, we used transneuronal transport of rabies virus to identify the areas of the primate cerebral cortex that communicate through multisynaptic connections with a major sympathetic effector, the adrenal medulla. We demonstrate that two broad networks in the cerebral cortex have access to the adrenal medulla. The larger network includes all of the cortical motor areas in the frontal lobe and portions of somatosensory cortex. A major component of this network originates from the supplementary motor area and the cingulate motor areas on the medial wall of the hemisphere. These cortical areas are involved in all aspects of skeletomotor control from response selection to motor preparation and movement execution. The second, smaller network originates in regions of medial prefrontal cortex, including a major contribution from pregenual and subgenual regions of anterior cingulate cortex. These cortical areas are involved in higher-order aspects of cognition and affect. These results indicate that specific multisynaptic circuits exist to link movement, cognition, and affect to the function of the adrenal medulla. This circuitry may mediate the effects of internal states like chronic stress and depression on organ function and, thus, provide a concrete neural substrate for some psychosomatic illness.

Concepts: Neuroanatomy, Brain, Cerebral cortex, Cerebrum, Limbic system, Frontal lobe, Premotor cortex, Brodmann area 24


Misophonia is an affective sound-processing disorder characterized by the experience of strong negative emotions (anger and anxiety) in response to everyday sounds, such as those generated by other people eating, drinking, chewing, and breathing [1-8]. The commonplace nature of these sounds (often referred to as “trigger sounds”) makes misophonia a devastating disorder for sufferers and their families, and yet nothing is known about the underlying mechanism. Using functional and structural MRI coupled with physiological measurements, we demonstrate that misophonic subjects show specific trigger-sound-related responses in brain and body. Specifically, fMRI showed that in misophonic subjects, trigger sounds elicit greatly exaggerated blood-oxygen-level-dependent (BOLD) responses in the anterior insular cortex (AIC), a core hub of the "salience network" that is critical for perception of interoceptive signals and emotion processing. Trigger sounds in misophonics were associated with abnormal functional connectivity between AIC and a network of regions responsible for the processing and regulation of emotions, including ventromedial prefrontal cortex (vmPFC), posteromedial cortex (PMC), hippocampus, and amygdala. Trigger sounds elicited heightened heart rate (HR) and galvanic skin response (GSR) in misophonic subjects, which were mediated by AIC activity. Questionnaire analysis showed that misophonic subjects perceived their bodies differently: they scored higher on interoceptive sensibility than controls, consistent with abnormal functioning of AIC. Finally, brain structural measurements implied greater myelination within vmPFC in misophonic individuals. Overall, our results show that misophonia is a disorder in which abnormal salience is attributed to particular sounds based on the abnormal activation and functional connectivity of AIC.

Concepts: Brain, Cerebrum, Hippocampus, Limbic system, Prefrontal cortex, Ventromedial prefrontal cortex, Insular cortex, Galvanic skin response


Men are traditionally thought to have more problems in understanding women compared to understanding other men, though evidence supporting this assumption remains sparse. Recently, it has been shown, however, that meńs problems in recognizing women’s emotions could be linked to difficulties in extracting the relevant information from the eye region, which remain one of the richest sources of social information for the attribution of mental states to others. To determine possible differences in the neural correlates underlying emotion recognition from female, as compared to male eyes, a modified version of the Reading the Mind in the Eyes Test in combination with functional magnetic resonance imaging (fMRI) was applied to a sample of 22 participants. We found that men actually had twice as many problems in recognizing emotions from female as compared to male eyes, and that these problems were particularly associated with a lack of activation in limbic regions of the brain (including the hippocampus and the rostral anterior cingulate cortex). Moreover, men revealed heightened activation of the right amygdala to male stimuli regardless of condition (sex vs. emotion recognition). Thus, our findings highlight the function of the amygdala in the affective component of theory of mind (ToM) and in empathy, and provide further evidence that men are substantially less able to infer mental states expressed by women, which may be accompanied by sex-specific differences in amygdala activity.

Concepts: Psychology, Brain, Neuroscience, Magnetic resonance imaging, Cerebrum, Mind, Limbic system, Emotion


Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.

Concepts: Brain, Human brain, Cerebrum, Wernicke's area, Limbic system, Frontal lobe, Brodmann area, Lateralization of brain function


Emotion is a primary motivator for creative behaviors, yet the interaction between the neural systems involved in creativity and those involved in emotion has not been studied. In the current study, we addressed this gap by using fMRI to examine piano improvisation in response to emotional cues. We showed twelve professional jazz pianists photographs of an actress representing a positive, negative or ambiguous emotion. Using a non-ferromagnetic thirty-five key keyboard, the pianists improvised music that they felt represented the emotion expressed in the photographs. Here we show that activity in prefrontal and other brain networks involved in creativity is highly modulated by emotional context. Furthermore, emotional intent directly modulated functional connectivity of limbic and paralimbic areas such as the amygdala and insula. These findings suggest that emotion and creativity are tightly linked, and that the neural mechanisms underlying creativity may depend on emotional state.

Concepts: Psychology, Neuroscience, Limbic system, Emotion, Affective neuroscience, Music, Piano


Sleep plays a crucial role in the consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information that will be consolidated during sleep remains largely unknown. Here we show that post-learning sleep favors the selectivity of long-term consolidation: when tested three months after initial encoding, the most important (i.e., rewarded, strongly encoded) memories are better retained, and also remembered with higher subjective confidence. Our brain imaging data reveals that the functional interplay between dopaminergic reward regions, the prefrontal cortex and the hippocampus contributes to the integration of rewarded associative memories. We further show that sleep spindles strengthen memory representations based on reward values, suggesting a privileged replay of information yielding positive outcomes. These findings demonstrate that post-learning sleep determines the neural fate of motivationally-relevant memories and promotes a value-based stratification of long-term memory stores.

Concepts: Brain, Sleep, Neuroscience, Memory, Cerebrum, Hippocampus, Limbic system, Long-term potentiation


More than 5 million deaths a year are attributable to tobacco smoking, but attempts to help people either quit or reduce their smoking often fail, perhaps in part because the intention to quit activates brain networks related to craving. We recruited participants interested in general stress reduction and randomly assigned them to meditation training or a relaxation training control. Among smokers, 2 wk of meditation training (5 h in total) produced a significant reduction in smoking of 60%; no reduction was found in the relaxation control. Resting-state brain scans showed increased activity for the meditation group in the anterior cingulate and prefrontal cortex, brain areas related to self-control. These results suggest that brief meditation training improves self-control capacity and reduces smoking.

Concepts: Brain, Tobacco smoking, Cerebrum, Limbic system, Relaxation technique, Premotor cortex, Chronic stress, Stress management